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Geometry, Graphs, Games and Optimization

Takao Asano

Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan
asano@ise.chuo-u.ac.jp

Abstract. In this talk, I discuss envy-free mechanisms for the cake
cutting and pie cutting problems. Specifically, based on envy-free and
truthful mechanisms for the cake cutting problem by M. Seddighin et
al. [1], I present an envy-free and truthful mechanism for the pie cutting
problem, which is a kind of generalizations of the cake cutting prob-
lem. T also present my representative results in computational geometry,
graphs, games, and combinatorial optimization during 45 years research
jointly done with my colleagues.

1 Pie cutting

M. Seddighin, M. Farhadi, M. Ghodsi, R. Alijani, and A.S. Tajik [1] considered

the following cake cutting problem. Given a divisible heterogeneous cake (0, 1]

and n strategic players with valuation V; = (a;,b;] = {z |0 <a; <2 <b; <1}

for each player ¢, find a mechanism for dividing the cake and allocating pieces

of the cake to n players to meet the following conditions:

(i) the mechanism is envy-free, i.e., each player (weakly) prefers his/her allo-
cated cake to any other player’s allocated cake,

(ii) the mechanism is strategy-proof (truthful), i.e., each player’s dominant strat-
egy is to reveal his/her own true valuation over the cake, and

(iii) the number of cuts made on the cake is small.

They proposed a polynomial time algorithm (mechanism) for this cake cutting

problem.

H. Umeda and T. Asano [2] considered the following pie cutting problem.
Given a divisible heterogeneous pie (0, 27| and n strategic players with valuation
Vi = (ai, b;] (0 < a; # b; < 2m) for each player i where V; = {x | a; < z < b;} if
a; <bjand V; ={x |a; <z <27} U{x |0 < x < b;} if a; > b;, divide the pie
and allocate sectors of the pie to n players to meet the following conditions:

(i) the mechanism is envy-free, i.e., each player (weakly) prefers his/her allo-
cated sectors of the pie to any other player’s allocated sectors of the pie,

(ii) the mechanism is strategy-proof (truthful), i.e., each player’s dominant strat-
egy is to reveal his/her own true valuation over the pie, and

(iii) the number of cuts made on the pie is small.

They proposed a polynomial time algorithm (mechanism) for this pie cutting

problem. Note that, if we consider problems on interval graphs and circular-arc

graphs, the problem of M. Seddighin et al. corresponds to one on interval graphs

and problem of Umeda and Asano corresponds to one on circular-arc graphs. In

this talk, I present the algorithm proposed by Umeda and Asano [2].
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Works jointly done with my colleagues

I also present brief overviews of the following works in computational geometry,
graphs, games, and combinatorial optimization jointly done with my colleagues.

(a)

General results on tour lengths in machines and digraphs, SIAM Journal on
Computing, 5 (1976) (with I. Takanami)

An upper bound on the length of a hamiltonian walk of a maximal planar
graph, Journal of Graph Theory, 4 (1980) (with T. Nishizeki, T. Watanabe)
Edge-deletion and edge-contraction problems, 14th ACM STOC, 1982 (with
T. Hirata)

Finding the connected components and a maximal clique of an intersection
graph of rectangles in the plane, Journal of Algorithms, 4 (1983) (with H.
Imai

A n(zte on nongraphic matroids, Journal of Combinatorial Theory, B, 37
(1984) (with T. Nishizeki, P.D. Seymour)

A new point-location algorithm and its practical efficiency - comparison
with existing algorithms, ACM Transactions on Graphics, 3 (1984) (with
M. Edahiro, I. Kokubo)

Dynamic segment intersection search with applications, 25th IEEE FOCS,
1984 (with H. Imai)

Visibility polygon search and Euclidean shortest paths, 26th IEEE FOCS,
1985 (with Tetsuo Asano, L. Guibas, J. Hershberger, H. Tmai)

Partitioning a polygonal region into trapezoids, Journal of ACM, 33 (1986)
(with Tetsuo Asano, H. Imai) (A preliminary version: Minimum partition
of polygonal regions into trapezoids, 2/th IEEE FOCS, 1983 (with Tetsuo
Asano))

A bucketing algorithm for the orthogonal segment intersection search prob-
lem and its practical efficiency, 3rd ACM Symposium on Computational Ge-
ometry, 1987, (with M. Edahiro, K. Tanaka, T. Hoshino)

Improved approximation algorithms for MAX SAT, 11th ACM-SIAM SODA,
2000 (with D.P. Williamson)

Nash equilibria in combinatorial auctions with item bidding and subadditive
symmetric valuations, IEICE Transactions on Fundamentals, 2018 (with H.
Umeda)

The dial-a-ride problem with fairness, Bulletin of the JSME, 2018 (with M.
Miyaoka, N. Sukegawa)

References

1.

M. Seddighin, M. Farhadi, M. Ghodsi, R. Alijani, and A.S. Tajik, Expand the
shares together: envy-free mechanisms with a small number of cuts, Algorithmica,
81(2019), pp. 1728-1755 (A preliminary version: R. Alijani, M. Farhadi, M. Ghodsi,
M. Seddighin, and A.S. Tajik, Envy-free mechanisms with minimum number of
cuts, Proc. of 31st AAAI Conference on Artificial Intelligence, pp. 312-318, 2017).
H. Umeda and T. Asano, An envy-free mechanism with minimum number of cuts
for the pie-cutting problem (in Japanese), FIT (Forum on Information Technology)
2018, A-023.
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New Results in Computational Origami

Erik D. Demaine
Massachusetts Institute of Technology

Abstract

Computational origami has proved itself an exciting field, providing beautiful mathematical and
algorithmic challenges, and enabling many exciting applications in robotics, 3D manufacturing,
architecture, deployable structures, and self-assembly. I will describe several recent results and
applications in this field. For example:

e The Origamizer algorithm (Demaine and Tachi 2017) finds an efficient “watertight” folding
of a square piece of paper into any 3D polyhedron.

The Origami Simulator software (Ghassaei, Demaine, Gershenfeld 2018) lets you test out
a crease pattern and visualize its folding without having to pick up a piece of paper. See
Figure 1.

The FOLD format (Demaine, Ku, Lang 2016) enables this software to interoperate with
other origami software, such as the excellent Freeform Origami (Tachi 2010).

e We now understand the fundamental conditions that make curved crease patterns fold
(Demaine, Demaine, Huffman, Koschitz, Tachi 2018).

e We have more efficient ways to fold certain 2.5D structures (Biswas, Demaine, Ku 2018;
Demaine, Ku, Yoder 2018).
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Figure 1: Two examples of interactive origami folding using the Origami Simulator by Ghassaei,
Demaine, and Gershenfeld (2018). [http://origamisimulator.org/|
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The Geometry of Diamonds
Stefan Langerman*

Département d’Informatique
Université Libre de Bruxelles
stefan.langerman@ulb.ac.be

In 1919, Marcel Tolkowsky published his book Diamond Design [1] providing
for the first time a mathematical study on how to design a diamond and tune its
proportions so as to optimize its brilliance and fire. His computations were the
basis of the modern round brilliant cut which is still, a hundred years later, the
most popular way to cut a diamond. Today, his round brilliant cut might very
well be one of the smallest, priciest and yet most common man-made polyhedra.

In this talk, I will go over different physical and geometric characteristics of
the diamond material, and the many different facets of the design and manu-
facture of a polished diamond, highlighting geometric and computational open
problems and challenges along the way.

References

[1] Marcel Tolkowsky. Diamond Design. Spon & Chamberlain, New York, 1919.
104 pp.

*Directeur de recherches du F.R.S.-FNRS
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Small triangular containers for triangles

Gergely Kiss and Janos Pach*

To find a minimum area ellipse (Lowner-John ellipse), triangle, rectangle, or convex k-gon enclosing
a given point set are classical problems in geometry with interesting applications in packing and covering,
approximation, convexity, computational geometry, robotics, and elsewhere [2], [6], [3], [1]. Unaware of
many old results and recent developments in this field, R. Nandakumar, a gifted computer programmer
and college teacher from Kochi, India, raised an interesting special instance of this problem, which is not
trivial even if we want to enclose a triangle by a triangle [5]: Determine the smallest area isosceles triangle
containing a given triangle ABC.

Nandakumar defined three special isosceles triangles associated with a triangle ABC, as follows. Denote
the lengths of the sides by a = |BC|, b = |AC/, and ¢ = |AB)|. If two sides coincide, then ABC' is is the
smallest enclosing isosceles triangle of itself. In the sequel, we assume without loss of generality that
a < b < c. Let B’ denote the point on the ray BC, for which |B’C| = b. See Fig. 1. Analogously, let
C’ (and C"") denote the points on AC (resp., BC) with |AC’| = ¢ (resp., |[BC"”| = ¢). Obviously, the
triangles AB'C, ABC’, and ABC" are isosceles. We call them special containers associated with ABC.
All of them share an angle with ABC'. Nandakumar suggested that for every triangle ABC one of the three
special containers associated with it is a smallest area isosceles triangle. If this were true, it would be very
easy to find a smallest “container”, that is, a smallest area isosceles triangle containing ABC'. (It turns out
that for “most” triangles ABC/ apart from a set of measure 0, the smallest container is uniquely determined.)

A

Figure 1: Special containers AB'C, ABC’, and ABC".

Here, we show that the situation is more delicate.

Proposition 1. For every v > m/2, there exists a triangle ABC with largest angle ~y such that none of the
special containers is a smallest area isosceles container for ABC.

Proof. Let~y > m/2 and, using the above notation, consider an “almost isosceles” triangle ABC, such that
its largest angle (at C') is v and b is only slightly larger than a. Let R be the unique point on the line BC
such that |AR| = |BR] (see Fig. 2). If b — a is sufficiently small, then <ARB > 7/2. Let AB’C denote
the special container defined above. We have |AR| = |BR| < |AC| = | B’C)|. The altitudes of the triangles
AB’C and ABR belonging to the sides B’C' and BR, respectively, are the same. Therefore, the area of
ABR is strictly smaller than the area of AB’C, showing that AB’C' cannot be a smallest area isosceles
container. On the other hand, if b — a was small enough, the areas of the other two special containers, ABC’
and ABC", are even larger than the area of AB’C. This means that none of the special containers are
minimal. O

*Rényi Institute of the Hungarian Academy of Sciences, Budapest.
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Figure 2: Obtuse triangle whose smallest area isosceles container is not special.

Clearly, all special containers of an acute triangle are acute. Next, we show that in some cases none of
these special containers can be minimal.

Proposition 2. There exists an acute triangle ABC contained in an obtuse isosceles triangle whose area is
smaller than the area of any special container associated with ABC.

Proof. Start with an almost isosceles triangle ABC' such that b is only slightly larger than a, and the angle
at C'is 7/2. Then c is close to v/2b. Let D denote the point on the ray AB, different from A, at distance b
from C'; see Fig. 3. As before, let AB’C be the special container with |B’'C| = b.

A

Figure 3: Acute triangle with an obtuse container smaller than the special containers.

Since <ACD > <ACB’' = n/2 and |CD| = |CB’| = b, the area of the special container AB'C is
slightly larger than the area of the triangle AC'D. The areas of the other two special containers, ABC’ and
ABC", are even larger (roughly v/2 times larger).

Keep A and B fixed, and continuously move C' away from A without changing the direction of AC'.
Then ABC becomes an acute triangle, and the point D at distance b from C' continuously moves away from
B. At the beginning of the motion, <AC'D > /2 and the area of the isosceles triangle AC'D is still smaller
than the area of the special containers associated with ABC. Thus, ABC meets the requirements of the
Proposition. O

However, in a forthcoming paper [4], under an additional assumption, we shall verify Nandakumar’s
conjecture.

Theorem 3. [4] Suppose that a triangle ABC has an acute smallest area isosceles container. Then this
container must be identical with one of the special containers associated to ABC.

Consider now a triangle ABC' with an obtuse isosceles container that satisfies the conditions in Propo-
sition 2. It follows immediately from Theorem 3 that all smallest area isosceles containers of ABC must be
obtuse or right-angled.

Although, it might happen that none of the special containers is a minimal one, a slightly weaker conjec-
ture of Nandakumar is still true.

Theorem 4. [4] Any triangle and any of its smallest area isosceles containers share a vertex and the angle
at this vertex.

14



The proof of this fact requires a surprising amount of work.

It is not difficult to construct triangles for which the smallest area and the smallest perimeter isosceles
containers are not the same [5]. Nevertheless, an analogue of Theorem 4 may well be true for smallest
perimeter containers.

Conjucture 5 (Nandakumar). Any triangle and any of its smallest perimeter isosceles containers share a
vertex and the angle at this vertex.

We do not know if the analogue of Theorem 3 is true for smallest perimeter containers.

Question 6. Is it true that if a triangle ABC has a smallest perimeter isosceles container which is acute,
then this container must be identical to one of the special containers associated to ABC?

References

[1] J. E. Boyce, D. P. Dobkin, R. L. Drysdale, and L. J. Guibas, Finding extremal polygons, SIAM J. Com-
puting 14 (1985), 134-147.

[2] L. Fejes Toth, Lagerungen in der Ebene, auf der Kugel und im Raum, Die Grundlehren der Mathema-
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Spanning bipartite graphs in graphs with large degree sum

Akira Saito, Nihon University

This talk is based on the joint researches with Guantao Chen (Georgia State University, USA),
Shuya Chiba (Kumamoto University, Japan), Ronald J. Gould (Emory University, USA), Xiaofeng
Gu (University of West Georgia, USA), Masao Tsugaki (Tokyo Medical and Dental University,
Japan) and Tomoki Yamashita (Kindai University, Japan).

Degree sum is a topic which has been studied actively in the theory of hamiltonicity. It deals with
the minimum sum of degrees of vertices in certain independent sets and relates it with hamiltonian
properties of graphs. One of the most well-known results in this topic is Ore’s Theorem. For a
non-complete graph G, we define 05(G) by

02(G) = min{dg(z) +da(y): z,y € V(G),z #y,ay ¢ E(G)},
where dg(v) is the degree of a vertex v in G. If G is a complete graph, we define o2(G) = +o0.

Theorem A (Ore’s Theorem [3]). For n > 3, every graph G of order n with oo(G) > n is
hamiltonian.

Moon and Moser [2] investigated a degree sum condition for hamiltonicity in bipartite graphs.
Trivially, a bipartite graph contains a hamiltonian cycle only if it is balanced. Also, in the spirit of
Ore’s Theorem, it may not be appropriate to incorporate the degree sum of vertices chosen from
the same partite set. For this reason, a slightly different type of degree sum is often used. Let G
be a bipartite graph with partite sets X and Y. If G is not a complete bipartite graph, we define
01,1 (G) by

01,1(G) = min{dg(z) + da(y): z € X,y € Y,zy ¢ E(G)}.

If G is a complete bipartite graph, we define o1 1(G) = +oc.
Moon and Moser gave a sufficient condition for a balanced bipartite graph G to contain a
hamiltonian cycle in terms of o1 1(G).

Theorem B (Moon-Moser Theorem [2]). For n > 2, every balanced bipartite graph G of order 2n
with 01,1(G) > n + 1 is hamiltonian.

The degree sum condition in Theorem B is sharp. For integers n and ¢t with n > 2 and 1 <
t < n —1, define H;,_; to be the graph formed from K;,; U K,_;,—+ by selecting one partite
set of each component and adding all possible edges between them. Then every graph G with
Kyt UKyt n—t CG C Hy,y is a balanced bipartite graph of order 2n and satisfies 01 1(G) = n,
but it is not hamiltonian. Also, The graphs G; and G5 depicted in Figure 1 are balanced bipartite
graphs of order 8 and satisfy 01 1(G;) =4 (i = 1, 2), but they are not hamiltonian.

The above examples act as exceptions if we relax the hypothesis of 011 (G) > n+1 in Theorem B
to 011(G) > n. However, Ferrara, Jacobson and Powell [1] proved that no other exception arises.

Theorem C ([1]). Let n be an integer with n > 2 and let G be a balanced bipartite graph of order 2n
with 011(G) > n. Then

(1) G is hamiltonian,

(2) Kit UKp_tn—t CGC Hypy for somet with1 <t <n-—1, or
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t 4 n-t n-t

Gy G, type-1 graph

Figure 1: type-1 and type-2 graphs

(8) n=4 and G is isomorphic to G1 or Gs.

Theorem C only deals with bipartite graphs, while Ore’s Theorem handles both bipartite and
non-bipartite graphs. Apparently, Ore’s Theorem concerns a broader class of graphs. However,
we report that Theorem C implies Ore’s Theorem. We say that a graph G is a type-1 graph if
Ky UKy 4 pt € G C Hypy for some t with 1 <t <n —1, and that it is a type-2 graph if G is
isomorphic to G or Gs.

Theorem 1. Let n be an integer with n > 2 and let G be a graph of order 2n. If 0o(G) > 2n, then
G contains a spanning balanced bipartite graph H such that

(1) 011(H) > n, and
(2) H is neither a type-1 nor a type-2 graph.

For graphs of even order satisfying Ore’s condition, Theorem 1 gives more detailed information
than the existence of a hamiltonian cycle.

While Theorem 1 says that a refinement of Moon—Moser Theorem implies Ore’s Theorem, we
suspect that Moon—Moser Theorem itself does not imply Ore’s Theorem. However, our attempt to
construct an example to show it has so far failed.

If G is a graph of odd order, we cannot obtain a spanning balanced bipartite subgraph of G.
However, we can still relate Ore’ Theorem with hamiltonian properties of dense bipartite graphs.
We will discuss the detail in the talk.
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Dense point sets with many halving lines
Géza Téth

Rényi Institute, Hungarian Academy of Sciences, Budapest

Suppose that we have a set P of n points in the plane in general position.
A line, determined by two points of P, is a halving line if it has the same
number of points of P on both sides. Determining the maximum number of
halving lines f(n) of a set of n points turned out to be very important in
the analysis of geometric algorithms. We are still very far from the solution,
the best bounds are nec\/@ < f(n) < ent/3.

A planar point set of n points is called y-dense if the ratio of the largest
and smallest distances among the points is at most yy/n. We construct
dense point sets with necm halving lines. This improves the bound
cnlogn of Edelsbrunner, Valtr and Welzl from 1997. Our construction can
be generalized to higher dimensions.

Joint work with Istvdn Kovacs (Technical University, Budapest).

18



On the convex crossing number

B. M. Abregof S. Fernandez-Merchant*f

Abstract

We improve the bounds for the minimum number
bkery (n,m) of crossings among convex drawings of
graphs with n vertices and m edges. We show that
To557 < bkeri(n,m)n?/m3 < %, whenever n <
m < n?. We also present conjectures about the

precise and asymptotic value of bkery (n, m).

1 Convex geometric graphs

A conver drawing of a graph is a drawing of a graph
where the vertices are located on a convex closed
curve and the edges are closed curves that lie en-
tirely within that curve. The goal of this paper is to
bound the number of crossings in such drawings de-
pending on its number of vertices and edges, n and
m, respectively. In 1982, Ajtai, Chvatal, Newborn,
and Szemerédi [1], and independently Leighton [2],
proved the so called Crossing Lemma. It states
that any drawing of any graph with n vertices and
m > 4n edges has at least ¢-m?3/n? edge-crossings,
where c is a universal constant.

This result was refined for convex drawings by
Shahrokhi et al. [6]. Specifically, for any graph G,
if bker (G) denotes the minimum number of cross-
ings over all convex drawings of G, then bker; (G) >
21—7m3 /n? for any graph G with n vertices and
m > 3n edges. (The notation bker;(G) follows [5]
because the convex crossing number is equivalent
to the book crossing number of graphs drawn in a
single page)

In this paper we improve Shahrokhi et al. result
as follows

Theorem 1. If G is a graph with n vertices and
m > (61/16)n edges, then

512 (m —n)? 1

(m —n)®
>
3.9551

bkery (G) >

— 2025 n? n?

To complement this result, we exhibit drawings

*California State Univ., Northridge, [bernardo.abrego, sil-
via.fernandez|@csun.edu.
TSupported by the NSF grant DMS-1400653.

of graphs with n vertices, m edges, and few cross-
ings.

Theorem 2. For everyn > 3 and m > n—3, there
are graphs G on m vertices and m edges such that

2 Crossing inequalities

The proof of the main theorem is based on a tech-
nique developed by Pach et al. [4, 3] for general
graphs: the idea is to prove tight inequalities for
the crossing number of sparse graphs, and then use
the probabilistic method to establish a general re-
sult. These inequalities are interesting on their own
as they settle the minimum value of bker; (G) for
some classes of sparse graphs.

Because the edges joining consecutive vertices in
the boundary do not have any crossings, from now
on we consider only drawings with no edges among
consecutive vertices. We call these drawings strictly
convex (this only affects m by at most n, which is
negligible when m > n).

Theorem 3. If D is a strictly convexr drawing of a
graph on n vertices and m edges, then

1. ex(D) > (m+1) — (n—2),
2. cx(D) 2 §(m+1) = 3(n - 2),

3. cr(D) > 2(m+1) — 2(n—2),
4. cx(D) = 6(m +1) — P (n —2).

The first three inequalities are tight for n — 2 <
m+1<3(n-2),3(n-2) <m+1<2n-2),
and 2(n —2) <m+1 < 3(n—2); respectively.

The proof is omitted due to space limitations.

3 Proof of Theorem 1

Consider an arbitrary convex drawing D on n ver-
tices and m edges. Remove the b < n edges in

19



the boundary. Then consider a random induced
subgraph H obtained by selecting each vertex inde-
pendently with probability p. If n(H), m(H), and
cr(H) denote the number of vertices, edges, and
crossings of H, respectively; then by Theorem 3(4),
it follows that cr(H)+ 22 > 6m(H)— 4n(H). Fur-
thermore, the expected value preserves this inequal-

ity and E(n(H)) = pn, E(m(H)) = p*(m — b), and
E(cr(H)) = p*cr(D). Thus
5, 33,

er(D) = 6(m = b)p™* = —np~* = op

Letting p = 45n/(16(m — b)), it follows that

(D) > 512 (m —n)3

2 5095 n2 + o(m?/n?).

4 Constructions

Theorem 4. There exist strictly convex drawings
D on n vertices and m edges such that
1(m+1)3

cr(D) < 3o

Proof. Let m and n be positive integers. Let D;
denote a strictly convex drawing of the complete
graph on j vertices minus its j boundary edges. The
constructions are obtained by connecting copies of
Dy, and Dyy1 by an edge (between any 2 copies,
see Figure 1). If there are a copies of Dy and b
copies of D11, then the resulting drawing has n =
a(k —2) 4+ b(k — 1) 4+ 2 vertices, m = a((g) —k+
1)+ b((kgl) — k) —1 edges, and cr = a(i) + b(kil)
crossings. This implies that

k(3k —5)
12

 k(k - 1)

cr = (m+1) B (n—2).

This shows the tightness of the first three inequali-
ties in Theorem 3. If k = [2(m + 1)/(n — 2)], then
it can be verified that

k(3k — 5) k(k —

1 —
1 mtl 12

5 Conjectures

Conjecture 5. For any integer k > 3, and any
strictly convex drawing D of a graph on n vertices
and m edges

k(3k — 5)
12

(k= 1)?

cr(D) > (m+1) B (n—2).

This conjecture was proved for k € {3,4,5} in
Theorem 3. If this conjecture is true, then by the
proof of Theorem 4, the inequality would be tight

Figure 1: A construction illustrating Theorem 4 for k = 6.
This construction is obtained by attaching copies of Dj and
Dk+1.

when (k—1)(n—2)/2 < (m+1) < k(n—2). Further-
more, the validity of this conjecture would provide

the exact minimum number of crossings of an arbi-
trary strictly convex drawing.

Conjecture 6. For any strictly conver drawing D
of a graph on n vertices and m edges let k = [2(m+
1)/(n—2)]. We have that

k(3k —5) k(k—1)2
12 12
and this inequality is tight for some D.

cr(D) > (m+1)— (n—2),

Finally, this last conjecture would further im-
ply the value of the mid-range crossing constant for
convex graphs.

Conjecture 7. If bkery(n,m) denotes the mini-
mum number of crossings among all conver draw-
ings on n vertices and m edges, and if n < m < n?,

then
2

. n
nh_)rrolo bkcrl(n,m)ﬁ =

L
3
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Crossings in twisted graphs

B. M.
J.

Abstract

We consider twisted graphs, that is, topological
graphs that are weakly isomorphic to subgraphs of
the complete twisted graph. We determine the ex-
act minimum number of crossings of edges among
the set of twisted graphs with n vertices and m
edges; state a version of the crossing lemma for
twisted graphs and conclude that the mid-range
crossing constant for twisted graphs is 1/6.

1 Introduction

A simple topological graph is a drawing of a graph
in the plane where the vertices are points, and the
edges are simple continuous arcs satisfying that any
two arcs have at most one point in common, which
is either a common endpoint or a proper crossing,
and no arc passes through any other vertex different
from its endpoints. If all edges of a simple topologi-
cal graph are straight-line segments, then it is called
a geometric graph. A geometric graph whose ver-
tices are in convex position, is called a convex graph.
Two simple topological graphs G and G’ are weakly
isomorphic if there exists an isomorphism between
G and G’ such that two edges of G’ cross if and only
if the corresponding edges of G do.

The complete twisted graph T,, is a complete sim-
ple topological graph with vertices v1vs, ... v, such
that two edges v;v; and vy vy cross if and only if
1<t <y <jori <i<j<j. (See Fig-
ure 1.) A simple topological graph G is a twisted
graph if G is weakly isomorphic to a subgraph of
T,. Twisted graphs were found in [3] as complete
topological graphs with maximum number of edge-
crossings but with no subgraph weakly isomorphic
to the complete convex graph with 5 vertices. A ver-
sion of the Erdos-Szereres Theorem for topological
graphs appeared in [5]: every complete topological
graph with n vertices has a topological subgraph
with m > ¢ logl/ 8n edges, which is weakly isomor-
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Figure 1: The complete twisted graph Tg.

phic to a complete convex or twisted graph. Several
problems previously studied for convex graphs were
recently studied for twisted graphs [4].

We are interested in crossing numbers on twisted
graphs. The crossing number of a topological graph
D is the number of edge-crossings in D. This mea-
sure for the non-planarity of a graph has been ex-
tensively studied [7]. Some of the major motiva-
tions for investigating crossing numbers are their
applications to VLSI design, to digital visual de-
sign, and to classical problems in discrete geome-
try. One of the fundamental results in this area is
known as the crossing lemma [2]: for any topolog-
ical graph D with n vertices and m > 4n edges,
cr(D) > (1/64)m3/n?, and this is tight except for
the multiplicative constant 1/64. This constant has
been progressively improved with the best current
bound cr(D) > (1/29)m?/n? (for m > 7n) [1]. It
was proved in [6] that this multiplicative constant
tends to a positive constant, called the mid-range
crossing constant, when n — oo and n < m < n?.

We prove the crossing lemma for twisted graphs
and conclude that the mid-range crossing constant
for twisted graphs is 1/6. In fact, for every m and n,
we determine the exact minimum crossing number
within the class T}, ,,, of twisted graphs with n ver-
tices and m edges and provide a family of crossing
optimal graphs.

2 Results

Let c¢rp(n, m) be the minimum number of crossings
among all twisted graphs in T, ,,. Let ¢, ,, be the

n

unique integer such that ("%“2’7"71) < (2) -m <
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("~%m). Then
tpm =1 — F’—l— (n—;)2—2mJ .

Theorem 1 (Crossing number of twisted graphs).
Let n and m be integers withn > 1 and 0 < m <

(5). Then crp(n,m) =

’ — 92 ’ ’ .
(5 =) ()

This theorem is a direct consequence of the fol-
lowing two results.

Theorem 2 (Crossing inequalities). Let G € T}, .

Forallt <n, cr(G) > ()m —2("tn+3("H?).

This bound is actually tight for any n and m
when t = t,, .

Theorem 3 (Tightness of crossing inequalities).
Foranyn > 1 and 0 < m < (g), there exists a
twisted graph G in T, ,, such that

cr(G)z( 2 >m2< ’3+ )n+3< ’4+ >

Namely, the set of edges of G is

{(i,j):1<i<n—1,i+1<j<min{i+¢n}}
U{(i,t+1+4):1<i<s},

where t = tnm and s = (";") = (5) +m.

Figure 2: A twisted graph with 8 vertices, 20 edges, and
crr(8,20) crossings.

Here is how our bound relates to the classic
crossing lemma and mid-range crossing constant
[2, 6]. Let n < m be positive integers; the nota-
tion n < m < n? stands for m is a function of n
such that lim, s (n/m) = lim, oo (m/n?) = 0.

Theorem 4 (Crossing lemma for twisted graphs).
Let G € T, 1, for integers n and m. If n <K m <«

n?, then
1 m3 m3
er(@) 2 n‘(n)
If m = cn for some constant ¢ > 2 and n >
le|?+3[c|+2
ﬁ, then

er(@) > (L§J> <3C_§CL§J _2> WLQJFZ’)(LCJL;L 2).

If m = cn? for some constant 0 < ¢ < %, then

r(@) > < 5’1% ) ”LQ

Moreover, these inequalities are tight.

An immediate corollary of Theorem 4 is the ex-
act value of this mid-range crossing constant.

Theorem 5 (Mid-range crossing constant for
twisted graphs). Let n and m be integers such that
n < m < n? Then

n2

nan;O crp(n, m) =5

There is a nice transition in the behavior of the
constant before and after the mid-range. Namely,
if m = cn for some constant ¢ > 2, then

nILHQOCTT(n’m):; = <L;J> <30§)CL36JQ>

b (5) (=38
0<

Similarly, If m = cn? for some constant
then

1
Sga

n?  JI—2c+1/3

lim crp(n,m)— =

oo m3  (1++1—2¢c)3
and
- Vi-2e4+1/3 1
=0+ (1++y/1—-2¢)3 6
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Vertex Nim on Cayley Graph

Tomoaki Abuku*f

1 Introduction

1.1 Impartial Game

This paper discusses “impartial” combinatorial
games in normal form, that is games with the fol-
lowing characters:

e Two players alternately make a move.

No chance elements (the possible moves in
any given position is determined in advance).

Both players have complete knowledge of the
game states.

The game terminates in finitely many moves.

Both players have the same set of the possible
moves in any position.

e A player who makes the last move wins.

Definition 1.1 (Outcome Classes). A game posi-
tion is called an A-position (resp. a P-position)
if the first player (resp. the second player) has a
winning strategy.

Clearly, all impartial game positions are classi-
fied into A/-positions or P-positions.

Theorem 1.2. ([3]) If G is an N-position, there
exists a move from G to a P-position. If G is a
‘P-position, there exists no move from G to a P-
position.

*affiliation:University of Tsukuba
Tmail:buku3416@gmail.com

2019
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1.2 Rules of the Game

A game called a Vertex Nim is an impartial game
played on a directed graph whose vertices are
weighted by any non-negative integers [1]. The
rules are as follows:

e In the starting position, a piece is placed at a
vertex of the graph.

e FKach player alternately moves the piece from
the vertex to one of its adjacent vertices and
decreases the weight of the vertex to any
strictly smaller non-negative integer.

Vertex Nim is an extension of Vertex geography
introduced by [2].

Definition 1.3 (Cayley Graph). Let H be a finite
group and S be a generating subset of H. The
Cayley graph (V, E) is a graph with vertex set V =
H and (directed) edge set E = {(z,y) | =,y €
H,3s €S,y = sx}.

In this paper, we discuss Vertex Nim on a Cayley
graph (V, E) of finite group H generated by S.

Example 1.4. Vertex Nim on the quaternion
group generated by S = {i,j}.



2 Winning Strategy

2.1 Quaternion Groups

Winning strategies of the game on the Cyclic group
and the Dihedral group have been already given in
[4]. Also a winning strategy of the game on the
quaternion group has been given, but we give a
simpler strategy of the game.

Lemma 2.1. If you start from one of the vertices
with the least weight in the Cayley graph of the
quatenion group, you are in a P-position, namely,
you have no chance to win unless the opponent
makes a mistake.

Example 2.2. In the case of Example 1.4, we have
the following by using Theorem 1.2 and Lemma 2.1.

2.2 Direct product of Cyclic Groups

We give a winning strategy for Vertex Nim on C, x
C'y,, which is not studied in [4].

Example 2.3. Vertex Nim on C3 x Cy.

3 Acknowledgements
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cussions.

References

[1] Burke, K. and George O., A PSPACE-
complete graph Nim, Games of No Chance 5,
259-269, 2017.

[2] Fraenkel, A. S. Scheinerman, E, R. Ullman,
D., Undirected edge geography, Theoretical
Computer Science, Vol. 112(2), 371-381, 1993.

[3] Siegel, A. N., Combinatorial Game Theory,
American Mathematical Society, 2013.

[4] Meyer, M., Nim on Groups, College of Saint
Benedict and Saint John’s University, Honors
Theses, 2013.



Critical sets of a magic cube
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A magic square is known in ancient times in China and India. Many people have been
interested in a magic square for hundreds years. A magic square has deeply relationship
to a latin square.

A Latin square of order n is an n X n array in which n distinct symbols are arranged
so that each symbol occurs in each row and column. A partial Latin square of order n
is an n x n array with entries chosen from the set {1,2,---,n} in such a way that no
element occurs twice or more in any row or column. A critical set in a Latin square L of
order n is a set C = {(4,4;k) | 4,4,k € {1,2,---,n}} such that L is the only Latin square
of order n which has symbol & in cell (i, 5) for each (i,7;k) € C, and no proper subset
of C has above property. A critical set is called minimal if it is a critical set of smallest
possible cardinality for L. A Latin square was studied in [4] and [3].

A magic square of order n is an arrangement of n? integers 1,2, ---,n? into an n x n
square with the property that the sums of each row, each column, and each of the main
diagonals are the same. It is known that a magic square of order n can be constructed if
n is an integer for which there is a pair of orthogonal diagonal Latin squares of order n.

More generally, a magic hypercube of order n and dimension ¢ is an arrangement of
n' integers 1,2,---,n' into an n X n x -+ X n (¢ times) array with the property that
the sums of each 1-dimensional subarray i-th row (i = 1,2,---,t) and each of the main
diagonals are the same. We call a magic hypercube with dimension three a magic cube.
A magic cube was studied by Trenkler [8] and [9].

As their applications to cryptography, there is a secret shareing scheme. A secret
sharing scheme in cryptography is developed for a set of participants to share the secret
value K. The first and the most famous scheme in various secret sharing schemes, is
a (t,w)-threshold scheme which was proposed by Shamir [6] in 1979. It is a method of
sharing a secret value K among a finite set P = { Py, Py, - - -, P,,} of w participants in such
a way that any ¢ participants can reconstruct K but no group of t—1 or fewer participants
can reconstruct K. Each piece of information of K distributed to each participant is
called a shadow. Secret sharing schemes using Latin squares have been investigated, for
instance, Cooper’s scheme [2] and Stones’ scheme [7]. Both schemes make use of partial
Latin squares. Cooper’s scheme use critical sets of Latin squares. Stones’ scheme use
Latin square autotopisms. Lu and Adachi [5] introduced a construction and protocol
of secret sharing schemes using magic hypercubes. In order to clarify the main ideas of
using magic hypercubes for secret sharing schemes in [5], we introduce the secret sharing
schemes using magic cubes in [1].

In this paper, we investigate some property of crutucal sets of a magic cube. Moreo-
vere, we give another secret sharing scheme using magic cube. .
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Abstract

During the JCDCG3 2017, Eppstein and Langerman suggested us that Alexandrov theorem
guaranties the foldability of every Conway tile into either an isotetrahedron (denoted by I) or a
rectangular dihedron (denoted by R). Although a few results relating the topic were obtained in
[1,2,3], it has not been known completely how to fold it. In this talk, we show explicitly the way to
fold every Conway tile, even if it is very long, into I or R on a basis of its 4-base (Fig. 1).
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We need the following definitions and results:

A tetrahedron is called an isotetrahedron if all its faces are congruent. A figure is called a Conway

tile if it satisfies the following criterion: Its perimeter can be divided into six parts by six consecutive

points A.B.C.D.E and F (all located on its perimeter) such that:

(1) The perimeter part AB is congruent by translation T to the perimeter part ED; i.e.1(A) =
E,t©(B) = D and AB//ED.

(2) Each of those perimeter parts BC, CD, EF, and FA is centrosymmetric; that is, each of them
coincides with itself when the figure is rotated by 180° around its midpoint.

(3) Some of the six points may coincide but at least three of them must be distinct (Fig. 2).

For a Conway tile N, we define the set of 4 midpoints v,,v,,v; and v, of centrosymmetric parts

of N as a 4-base of N under the agreement that midpoint of a centrosymmetric part XY is X (=Y) if

X coincides with Y. Thus, there exists a 4-base for any Conway tile N (Fig. 3).

B D
C
A E
F
Fig.2 Conway tile Fig.3 4-base of N

Alexandrov’s Theorem [5]
Any Alexandrov gluing corresponds to a unique convex polyhedron (where a doubly covered
polygon is considered a polyhedron).

Theorem [4] Two figures P and Q have a reversible hinged dissections if and only if P and Q are
two noncrossing nets of a common polyhedron G.

P: Q: b G:

s A Vs Vs V3 V2 V1

TI
2 T 2
( ) a
V. v
1.02 ° 0.8 b

171 2 4
v, V3

Fig. 4 P, Q are reversible, G is a common isotetrahedron
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1 Introduction

In computational origami, one of the most remark-
able problems asks if every convex polyhedron has an
edge-unfolding to a simple and nonoverlapping poly-
gon [3, Open Problem 21.1]. Here, an edge-unfolding
is a set of edges of the polyhedron such that cutting
along these edges unfolds the polyhedron.

There are several evidences for/against the con-
jecture (see [3, Sections 22.2 and 22.3]); however, it
is far from to be settled. As an evidence for this con-
jecture, it is known that any convex polyhedron P is
edge-unfoldable if P is a prismoid or a dome; how-
ever, they form a quite limited set of convex polyhe-
dra. On the other hand, as an evidence against this
conjecture, there are several edge-ununfoldable non-
convex polyhedra. In this context, a key property of
a polyhedron is topological converity; a polyhedron
P is topologically convex iff there is a convex polyhe-
dron P’ such that the graph induced by its vertices
and edges is isomorphic to the one induced by P.
In fact, if we do not restrict to topologically convex
polyhedra, it is easy to make an edge-ununfoldable
polyhedron with 7 faces: take a tetrahedron and add
a tetrahedral bump in the middle of one of its faces.

Research on small edge-ununfoldable nonconvex
polyhedra gives us insight of the open problem. In
[5], Griinbaum gives a polyhedron with 13 vertices
and 13 faces that is not edge-unfoldable. We sharpen
such edge-unfoldability of nonconvex polyhedra:

Theorem 1.1 (1) There exists a topologically con-
vex polyhedron with 7 vertices and 6 faces that is not
edge-unfoldable. (2) There exists a topologically con-
vex polyhedron with 6 vertices and 7 faces that is not
edge-unfoldable. (3) Any polyhedron with less than 6
vertices or 6 faces is edge-unfoldable.

That is, we give much smaller edge-ununfoldable

polyhedra, and we also prove that they are optimal
with respect to the number of faces and vertices, re-
spectively. Note that they are not only topologically
convex, but also all their faces are simple polygons
(or simply connected and no holes).

2 Edge-ununfoldable polyhedra

In order to prove Theorem 1.1(1), we show a poly-
hedron P with 7 vertices and 6 faces s.t. any edge-
unfolding of P causes an overlapping. It is as shown
in Figure 1: P has an aper G, and the base of P
consists of one triangle ABF and one concave pen-
tagon BCDEF. The side of P consists of 2 trian-
gles CDG and EDG and 2 concave quadrilaterals
ABCG and AFEG. We make P symmetric to its
mirror image across the plane AGD. The key prop-
erties of the polyhedron P are the following; (a) to-
tal angle around D > 360°, (b) total angle around
G > 360°, (¢) ZCBF + ZCBA > 360°, and (d)
LABF + ZCBA > 300° and BF < BC.

Let G = (V, &) be the graph induced by P. Then
any edge-unfolding of P induces a spanning tree 7 of
G. Let 7 be any spanning tree of G. We show that
any edge-unfolding given by 7 produces overlapping.
Since T is a tree, it has at least 2 leaves. However,
from the properties (a)-(c), none of B, F,D,G can
be a leaf since overlapping occurs at leaves. On the
other hand, vertices A,C,E cannot be three leaves
since we cannot have any spanning tree 7 that con-
tains the edge BF with 3 leaves A,C,E. Thus T
has only 2 leaves, i.e., 7 is a Hamilton path of G.
In most cases, ABCG overlaps with CBF'ED at ver-
tex B by (c). The other case is shown in Figure 2.
Thus the polyhedron P in Figure 1 has no edge-
unfolding without overlapping. In order to prove
Theorem 1.1(2), we show a polyhedron P with 6 ver-
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Figure 1: An edge-ununfoldable polyhedron with
7 vertices and 6 faces.

Figure 3: An edge-ununfoldable polyhedron with 6
vertices and 7 faces.

tices and 7 faces s.t. any edge-unfolding of P causes
an overlapping. This polyhedron is composed of a
quadrilateral ABC'D concave at C, connected to 2
apices F and F as in Figure 3. This polyhedron is de-
signed to have the following properties: (a) ZBCE >
ZBCD, and (b) LAEB + /BEC + ZCEF > 2m.
Property (a) forces that edges BC and C'D must be
cut, otherwise triangle BC'E would overlap quadri-
lateral ABCD. Because A,B,D are the only vertices
with positive curvature, two leaves of the spanning
tree exist either on A, B, or D. If B and D are
both leaves, then, the only route to A is through path
CFFEA. However, corner F'EA would create an over-
lapping vertex by condition (b). If A and D are the
only two leaves, the tree is a path AEFDCB. Now
this again contains corner AEF, thus the unfolding
overlaps by (b).

3 Edge-unfoldable polyhedra with

less than 6 vertices or 6 faces

In order to prove Theorem 1.1(3),we first recall that
DiBiase established that all convex polyhedra with 4,
5, or 6 vertices can be edge-unfolded [4]. Based on
this result, there are only two cases to be considered;
P is (a) a nonconvex square pyramid (with 5 faces
and 5 vertices), or (b) a nonconvex polyhedron that
consists of 6 triangles and 5 vertices with degree se-
quence 3,3,4,4,4. The proof that these two polyhedra
are edge-unfoldable is omitted here.

Figure 2: An edge-unfolding that causes overlap-
ping.

4 Concluding remarks

We investigated minimal edge-ununfoldable polyhe-
dra. We show two edge-ununfoldable polyhedra; one
has 6 faces and 7 vertices, and the other has 7 faces
and 6 vertices. They are optimal with respect to the
number of faces and vertices for topologically convex
polyhedra. Griinbaum shows an edge-ununfoldable
convex faced polyhedron with 13 faces and 13 vertices
[5], and Bern et al. give an edge-ununfoldable trian-
gular faced polyhedron with 36 faces and 20 vertices
[1]. Improving these upper bounds and/or showing
lower bounds are future work.
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PSPACE-completeness of Pulling Blocks to Reach a Goal

Joshua Ani* Sualeh Asif*
Dylan Hendrickson*

Abstract. We prove PSPACE-completeness of all
variations of pulling-block path-planning puzzles
(reaching a goal with or without forced pulls, of ar-
bitrary strength, with or without gravity) that in-
clude fixed blocks or walls, with the exception of
PULL?-1FG (strength 1, fixed blocks, with gravity)
for which we only show NP-hardness.

In the PULL series of path-planning problems [3,4],
the goal is to navigate an agent from a given starting
square to a given target square within a rectangular
board featuring impassable but pullable 1 x 1 blocks.
We study several different variants of PULL, which
can be combined in arbitrary combination:

1. Strength: In PULL-k, the agent can pull an un-
broken horizontal or vertical line of up to k& pul-
lable blocks at once. In PULL-%, the agent can
pull arbitrarily many blocks at once.

2. Fixed blocks/walls: In PULL-F, the board
may have fixed 1 x 1 blocks that cannot be tra-
versed or pulled. In the more general PULL-W,
the board may have fixed thin (1 x 0) walls.

3. Optional/forced pulls: In PULL!, every agent
motion that can also pull blocks must pull as
many as possible (as in many video games where
the player input is just a direction). In PULL?,
the agent can choose whether and how many
blocks to pull. (The latter is traditionally called
PULL in the literature, but we use the explicit
“?” to indicate optionality.)

4. Gravity: In PULL-G, all blocks fall maximally
downward after each agent move (like gravity).

Table 1 summarizes our and known results for
all variants that include fixed blocks or walls: we
prove PSPACE-completeness for any strength, with
optional or forced pulls, and with or without grav-
ity, with the exception of PULL?-1FG for which we

*Massachusetts Institute of Technology, Cambridge, MA,
USA

TBoston University, Boston, MA, USA

fAlgorand, Boston, MA, USA

Erik D. Demaine*
Jayson Lynch*

Yevhenii Diomidov*
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(a) Initial state

(b) A strength-1 move

Figure 1: A pulling-block puzzle. The robot is the agent,
the flag is the goal square, the light gray blocks can be
moved, and the bricks are fixed in place. Robot and flag
icons from Font Awesome under CC BY 4.0 License.

only show NP-hardness. The only previous result
for this problem family is NP-hardness for PULL?-k
even without fixed blocks [4]. In some cases, our re-
sults are stronger than the best known results for
the corresponding PUSH (pushing-block) problem;
see [3]. More complex variants PULLPULL (where
pulled blocks slide maximally), PUSHPULL (where
blocks can be pushed and pulled), and STORAGE
PuULL (where the goal is to place multiple blocks into
desired locations) are also known to be PSPACE-
complete [3].

Our reductions are from two problems: Asyn-
chronous Nondeterministic Constraint Logic (NCL)
[2,5] and planar 1-player motion planning [1]. With-
out gravity, Figure 2 shows our NCL gadgets. With
gravity, we reduce from the motion-planning frame-
work [1]. For optional-pulling PSPACE-hardness
(with k& > 2), we use the locking 2-toggle gadget in
Figure 3. For forced pulling, we introduce a new gad-
get, a self-closing door, and show it can simulate a
locking 2-toggle; see Figure 4. For the one remaining
case of PULL?-1FG, we show NP-hardness by con-
structing a crossing XOR gadget (not shown here).

References

[1] Erik D. Demaine, Dylan H. Hendrickson, and
Jayson Lynch. A general theory of motion plan-
ning complexity: Characterizing which gadgets
make games hard. arXiv:1812.03592, 2018.

31



Problem Gravity | Forced | Strength | Features Hardness Previous Best
PuLL?-kF no no k>1 fixed blocks | PSPACE-complete NP-hard [4]
PuLL?-«F no no 00 fixed blocks | PSPACE-complete NP-hard [4]
PuLL!-kF no yes k>1 fixed blocks | PSPACE-complete —
PuLL!-xF no yes 00 fixed blocks | PSPACE-complete —
PuLL?-1FG yes no k=1 fixed blocks NP-hard —
PuLL?-1WG yes no k=1 thin walls | PSPACE-complete —
PuLL?-kFG yes no k>2 fixed blocks | PSPACE-complete —
PuLL?-xFG yes no 00 fixed blocks | PSPACE-complete —
PuLLl-kFG yes yes k>1 fixed blocks | PSPACE-complete —
PuLL!-+FG yes yes 00 fixed blocks | PSPACE-complete —

Table 1: New and known results for PULL variants. We omit PULL-W hardness implied by PULL-F hardness.

(a) NCL AND gadget for PULL-kF for k& > 1.
Also works for W variant and PULL-x.

T T T T T T T T T T T T T T T T T T T

Figure 3: Construction of a locking 2-toggle (in the state
where only the right tunnel is traversable, and traversing
lets you optionally flip), which by [1] shows PSPACE-
completeness of PULL?-kFG for k > 2. Also works for
PuLL?-EWG for k > 1 and for PULL?-*WG.

[=

} (b) This self-closing

(b) NCL or gadget for PULL-KF for k > 1 Also
works for W variant and PULL-x.

Figure 2: Gadgets for the reduction from asynchronous
NCL to PuLL-kF.
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door can be “opened”
from the right tunnel,
and forced to “close”
when traversing the
left tunnel.

(a)  Re-usable one-way
“diode” gadget, denoted »+
in Figure 4b.

Figure 4: Gadgets for PULLI-1FG.
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A complete list of all convex polyhedra made by gluing regular pentagons

Elena Arseneva?,

1. Abstract. We give a complete description of all convex
polyhedra whose surface can be constructed by folding and
gluing (edge-to-edge) regular pentagons.

2. Introduction. Given a collection of 2D polygons, a
gluing describes a closed surface by specifying how to glue
each polygon edge onto another edge from the collection.
Alexandrov’s uniqueness theorem [1] states that any gluing
that is homeomorphic to a sphere and that does not yield a
total facial angle more than 27 at any point, is the surface
of a unique convex 3D polyhedron®.

Unfortunately, the proof of this theorem is highly non-
constructive and the only known approximation algorithm
has (pseudopolynomial) running time larger than O(n!!16)
(where n is the total number of edges) [7], and depends on
the aspect ratio of the polyhedral metric, the Gaussian curva-
ture at its vertices, and the desired precision of the solution.
There is no known exact algorithm for reconstructing the 3D
polyhedron, and in fact the polyhedron’s coordinates might
not even have a closed formula [5].

Enumerating all possible valid gluings is also not an easy
task, as the number of gluings can be exponential even for a
single polygon [2]. However one valid gluing can be found in
polynomial time using dynamic programming [4, 9]. Com-
plete enumerations of gluings and the resulting polyhedra are
only known for very specific cases such as the latin cross [3]
and a single regular polygon [4].

This paper continues the study, initiated by the first two
authors, for the special case when the polygons to be glued
together are all identical regular k-gons. For k > 6, the only
two possibilities are two k-gons glued into a doubly covered
k-gon, or one k-gon folded in half (if & is even). When k = 6,
the number of hexagons that can be glued into a convex sur-
face is unbounded, however there are at most 10 possible
graph structures for such (non-flat) polyhedra, 6 of which
have been identified, and all gluings forming doubly-covered
2D polygons have been characterized [8].

Here we study the case k = 5, i.e., gluing regular pen-
tagons edge to edge. This case differs substantially from the
case of hexagons, since it is not possible to produce a ver-
tex of Gaussian curvature 0 by gluing pentagons. Therefore
both the number of possible graph structures and the num-
ber of possible gluings is constant. To determine the graph
structure of each gluing, we use an implementation [10] of
the Bobenko-Izmestiev algorithm to obtain an approximate
polyhedron P for the gluing, and then we use a computer
program to generate a certificate that the approximation P
has the correct graph structure if it is simplicial. For non-
simplicial polyhedra, we resort to ad-hoc proofs (which ap-
pear in the full version).

3. Gluing regular pentagons together. Let P be a
convex 3D polyhedron. The Gaussian curvature at a vertex
v of P equals 2w — 22:1 oy, where ¢ is the number of faces of
P incident to v, and «f is the angle of the j-th face incident
to v. Since P is convex, the Gaussian curvature at each ver-
tex of P is non-negative. The Gauss-Bonnet theorem (1848)
states that the total sum of the Gaussian curvature of all

Stefan Langerman-,

1

3 and Boris Zolotov*

vertices of a 3D polyhedron P equals 4.

4. How many pentagons can we glue and which ver-
tices can we obtain? Let P be a convex polyhedron
obtained by gluing several regular pentagons edge-to-edge.
Vertices of P are clearly vertices of the pentagons. The sum
of facial angles around a vertex v of P equals 37/5 (the
interior angle of a regular pentagon) times the number of
pentagons glued together at v. Since the Gaussian curvature
at v is in (0, 27), the number of pentagons glued at v can be
either one, two, or three. This yields the Gaussian curvature
at v to be respectively 77 /5, 47/5, or 7w/5.

Note that, as opposed to the case of regular hexagons,
it is not possible to produce a vertex of curvature 0 (which
would be a flat point on the surface of P) by gluing several
pentagons. Therefore all the vertices of the pentagons must
be vertices of P.

Proposition 1. Suppose P is a convex polyhedron obtained
by gluing edge-to-edge N regular pentagons. Then: (a) P has
2 + 1.5N wertices in total. In particular, N must be even.
(b) N is at most 12.

Enumerating all possible gluings. In order to reach our
main goal and list all the convex polyhedra that can be ob-
tained by gluing regular pentagons edge-to-edge, we used a
computer program to list all the non-isomorphic gluings of
this type. Our program is a simple modification of the one
that enumerates the gluings of hexagons [8].

5. Determining the shape from the gluing. Consider
a gluing M that satisfies Alexandrov’s conditions and thus
corresponds to unique polyhedron P. Suppose we have a
simplicial polyhedron P whose edge lengths and facial an-
gles are close to those of P. We use a program that checks
whether the graph structures of P and P coincide.

Let V, E, F be the numbers of vertices, edges and faces
of P respectively; D the maximum degree of a vertex of P;
L the length of the longest edge of P; B,.(u) the ball in R3
of radius r centered at the point u.

Vertices of P correspond to cone points of metric M, and
the edges are the shortest paths between their endpoints.
Thus for every edge of P we can calculate the discrepancy
between its length and the corresponding length in M (which
is the intended length of that edge). Let p be the maximum
of the discrepancy for all edges.

Similarly, a pair of adjacent edges forms an angle in both
P and M. We denote the maximum discrepancy between
these angle values by ~.

The basis of our procedure is an observation that each
vertex of P lies within r—ball centered at the correspond-
ing vertex of P, where r = E? - L - 2sin(Dv/2) + Eu (see
Theorem 3).

Our procedure verifies that there does not exist a plane
intersecting all four r—balls centered at any four vertices of P.

IE. A. was supported in part by F.R.S.-FNRS, and by the SNF grant P2TTP2-168563 of the Early PostDoc Mobility program. S. L. is directeur
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Theorem 2. Given a metric M and a simplicial polyhedron
P we can check in time O(E) that the convex polyhedron cor-
responding to metric M has the same graph structure as P
without false-positive errors.

False negative errors can occur if the precision is not suf-
ficient, and a plane exists that intersects all four r—balls cen-
tered at the vertices of P even though there is an edge con-
necting two of the vertices. In such a case precision has
to be increased by replacing P with a polyhedron that has
smaller discrepancy in edge lengths and values of angles and
repeating the procedure.

To obtain approximate polyhedron P one can use the
existing algorithm [6, 7].

6. Precision of vertex location based on the approx-
imation. We aim to find a small real number r such that
each vertex of P lies within an r—ball centered at the corre-
sponding vertex of P.

Without loss of generality, one of the vertices of both P
and P is located at (0,0,0), one of the edges incident to this
vertex (in P and in P, respectively) is aligned with the =
axis, and one of the faces incident to that vertex and that
edge — both in P and P — lies on the horizontal plane
z=0.

We derive the following theorem, which is a key state-
ment to prove the correctness of our main result.

Theorem 3. Suppose p is the maximum edge discrepancy
between P and P, ~ is the maximum angle discrepancy
between P and P, D is the mazximum degree of a vertex
of P. If Dy < 7/2, then each vertex of P lies within
an r-ball centered at the corresponding vertexr of P, where
r=FE?.L-2sin(Dv/2) + Ep.

Using this theorem we can obtain the complete list of all
the polyhedra that can be obtained by gluing regular pen-
tagons. We present this list below.

7. A complete list of all shapes obtained by gluing
pentagons. Figure 1 shows all polyhedra that can be
obtained by gluing regular pentagons. For those polyhedra
that are simplicial, their graph structure is confirmed by ap-
plying the method of Section 6, for the others the proof is
geometric, and it will apear in the full version of this note.

8. Concluding remarks and future work. The main
outcome of this paper is the list of all convex polyhedra that
can be made by gluing several regular pentagons edge to
edge. However the way we obtained this list is interest-
ing in its own right, and may lead to other results. While
this will not always work efficiently for Alexandrov’s problem
on arbitrary polyhedral metric (our estimation of r depends
quadratically on the number of vertices of the polyhedron), it
should work well for certain classes of metrics such as metrics
with small number of cone points, in particular, for metrics
obtained by gluing edge-to-edge regular squares, triangles, or
other polygons with fixed angles. One question that remains
open is whether it is possible to deal with non-simplicial
graph structures in a generic way, i.e., lift the restriction
from Theorem 2 that P is simplicial.

e & =

(a) (b) (c)
(d) (e)
() (g) (h)

Figure 1: Polyhedra glued from regular pentagons
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Sublinear Explicit Incremental Planar Voronoi Diagrams

Elena Arsenevaf
Stefan Langerman'’

Abstract

A data structure is presented that explicitly
maintains the graph of a Voronoi diagram of
N point sites in the plane or the dual graph
of a convex hull of points in three dimensions
while allowing insertions of new sites/points.
Our structure supports insertions in O(N %)
expected amortized time, where O suppresses
polylogarithmic terms. This is the first result to
achieve sublinear time insertions; Previously it
was shown by Allen et al. that © (/N 2) amortized
combinatorial changes per insertion could occur
in the Voronoi diagram but a sublinear-time
algorithm was only presented for the special
case of points in convex position.

1 Introduction

Voronoi Diagrams and convex hulls are two key-
stone geometric structures of central importance
to computational geometry. We focus the de-
scription here on planar Voronoi diagrams; the
results can be extended to the dual graph of
3D-convex hulls as the structures are known
to be related. We create a data structure that
explicitly maintains Voronoi diagrams under in-
sertion of new sites. The diagram is stored as a
graph in adjacency list format on which prim-
itive operations, including links and cuts, are
performed. Previous work [3], which we use as
a subroutine, is able to dynamically maintain
a set of N points and answer nearest neighbor
queries in polylogarithmic time, but this is dif-
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ferent from maintaining the Voronoi diagram
explicitly; it relies crucially on nearest neighbor
being a decomposable search problem, whereas
maintaining the Voronoi diagram is clearly not.
In [2] it was observed that while there could
be a linear number of changes to the embed-
ded Voronoi diagram with each site insertion,
this is not equivalent to the number of combi-
natorial changes to the graph structure of the
Voronoi diagram. It was then proved by show-
ing that the amortized number of combinatorial
changes is only ©(N %) per site insertion. This
observation opened the possibility to maintain
the Voronoi diagram graph in faster than lin-
ear time per insertion, which [2| then did for
the restricted case where the sites are in con-
vex position. Our result is a data structure
that explicitly maintains the graph of a Voronoi
diagram of arbitrary point sites in the plane
while allowing insertions of new sites in O(N %)
expected amortized time, where O suppresses
polylogarithmic terms. Previously, no sublinear
method was known for this problem.

2 Sketch of Data Structure

The data structure has several parts:

e An adjacency list representation of the
Voronoi diagram.

e The dynamic nearest neighbor structure
(DNN) [3] for the sites which supports in-
sertion and deletion of sites and nearest
neighbor queries in O(1) expected amor-
tized time.

e A linked list of all Voronoi cells of size at
least IV i, which we call big.

e Call the neighbors of a Voronoi cell the
Voronoi vertices connected to the cell by
an edge. A neighbor is relevant if it is not
incident to a big cell. For each big cell
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b; store a circular linked list of © ('b—l')

Ni
data structures each associated with the

consecutive range of O(N %) neighbors of
B;. In each structure, store the Voronoi
circles for those neighbors that are relevant.

e These dynamic circle-reporting structures
(DCRs) are known variants of the DNN
structure that support insertion and dele-
tion of circles in time O(1), and given a
query point, report all k circles containing
the point in time O(k).

e For each big cell also store the vertices of
the cell in circular order in a binary search
tree supporting O(log N)-time operations,
including split and merge (such as a red-
black tree).

In [1] it was shown that the number of cells of
the Voronoi diagram undergoing combinatorial
changes per insertion is O(N %) amortized, there
are a constant number of combinatorial changes
per cell, and these cells with changes are con-
nected. Thus, the main goal of this work is to
find the cells that change. Implementing those
changes is done using the techniques of [1].

Our method is to use the DNN structure to
locate one Voronoi cell that must change and cre-
ate a queue with this cell and all large cells. We
then remove each cell from the queue, process
its changes, and add into the queue any neigh-
boring small cells with unprocessed changes; we
do not have to add neighboring large cells as all
of them are in the initial queue and will be pro-
cessed. What we do to process small and large
cells is different, but is based on the fact that
given a cell with changes, the neighboring cells
that change can be identified by seeing which
neighbors of the cell are defined by Voronoi cir-
cles that contain the newly inserted site. Folr
small cells we can afford to look at all < N1
neighbors’ circles in a brute force way, while
for the large cells we use the DCRs to identify
the circles containing the new site. There are
a number of details, these include the possible
need to propagate changes in a small cell to the
DCRs of a neighboring large cell. Also, a split
in a large cell could require splitting and merg-
ing a constant number of its DCR structures
which is done through rebuilding.

If s small cells change, and b1, bo,...bg| are

the big cells, and ¢; is the number of circles
retuned by the DCR structures of b;, the amor-
tized expected runtime is

(B

Since s is O(N%) amortized [1], Z'fjl |bi] < N,

|B| < N%, and Z'Zill l; < sNi, this is simply
0 (N%> amortized.

i=1

3 Discussion

There remains a gap between the O (N %> ex-
pected amortized runtime of our structure and
the © (N
rial changes to the Voronoi diagram. The ran-
domization comes solely from the shallow cut-
tings used in the DNN structure [3]; it is open
whether this could be removed. Maintaining the
Voronoi diagram with insertions and deletions

> amortized number of combinato-

is hopeless as the © (N %> amortized bound

for insertions only becomes © (N) for insertions
and deletions.
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Tetris is NP-hard even with O(1) columns

Sualeh Asif* Erik D. Demaine* Jayson Lynch* Mihir Singhal*

Abstract

We prove that the classic falling-block video game Tetris remains NP-complete even when re-
stricted to 8 columns, settling an open problem posed over 15 years ago [BDH104|. Our reduction
is from 3-PARTITION, similar to the previous reduction for unrestricted board sizes [BDH™104], but
with a better packing of buckets.

In the (perfect-information) TETRIS problem [BDH'04|, we are given an initial board state of filled
squares and a sequence of pieces that will arrive, and the goal is to place the pieces in sequence to
either survive (not go above the top row) or clear the entire board. This problem was proved NP-hard
for arbitrary board sizes in 2002 [BDH"04], and more recently for other polyomino pieces [DDE*17].
The variant we consider here is the c-column Tetris problem (abbreviated ¢C-TETRIS), which is the
TETRIS problem restricted to boards with exactly ¢ columns. The original Tetris paper [BDH104] asked
specifically about the complexity of ¢C-TETRIS for ¢ = O(1), motivated by real-world Tetris where
¢ = 10. Our main result is the following:

Theorem 1. It is NP-complete to survive or clear the board in ¢C-TETRIS for any ¢ > 8.

Membership in NP follows from the same result for general TETRIS [BDH"04, Lemma 2.1|. Like
[BDH™'04], we reduce from the strongly NP-hard 3-PARTITION problem: given a multiset of nonnegative
integers {a1,...,a3s} and a nonnegative integer T satisfying the constraints Zf’il a; = sT and % <a; <
% for all 1 < i < 3s, determine whether {ai,...,ass} can be partitioned into s (disjoint) triples, each
of which sum to exactly T. For the reduction, we exhibit a mapping from 3-PARTITION instances to
8C-TETRIS instances so that the following is satisfied:

Lemma 2 (TETRIS <= 3-PARTITION). For a “yes” instance of 3-PARTITION, there is a way to drop
the pieces that clears the entire board without triggering a loss. Conversely, if the board can be cleared,
then the 3-PARTITION instance has a solution.

Proof sketch. The initial board, illustrated in Figure 1(a) (where filled cells are grey and the rest of the
cells are unfilled), will have 8 columns and 12sT" + 48s + 26 rows. The reduction is polynomial size.

The piece sequence is as follows. First, for each a;, we send the following a; sequence (see Figures 1(i—
m)): (gmll, (FH, Bem, FH)%, B, mmm ). After all these pieces, we send the following clearing sequence
(see Figures 1(n) and (b 1)): (B sl "9 , ()07 420540, W {357 +1254),

Figures 1(b-n) illustrate that a solution to 3-PARTITION will clear the board. To show the other direc-
tion, we progressively constrain any 8 C-TETRIS solution to a form that directly encodes a 3-PARTITION
solution. Because the area of the pieces sent is exactly equal to 8(12sT + 48s + 26), no square can be
left empty. We enumerate all possible cases to show that this goal is impossible to meet (some square
must be left empty) if there is no 3-PARTITION solution. Figures 1(o-w) show some of the cases. O
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)

(t) (w)

(s)

(b—d) demonstrate filling and clearing the board in the final

(0)

Figure 1:

(n) shows our bucket terminator.

o.

shows the initial board.

(a)

clearing sequence. (i-m) show a valid sequence of moves for a;
(o—w) show invalid possibilities for various pieces in the bucket.
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RELOCATION WITH UNIFORM EXTERNAL CONTROL IN LIMITED DIRECTIONS
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Robert Schweller, Tim Wylie
Department of Computer Science, University of Texas - Rio Grande Valley, Edinburg, TX 78539, USA

Abstract
We study a model where particles exist within a board and move single units based on uniform external
forces. We investigate the complexity of deciding whether a single particle can be relocated to another position
in the board, and whether a board configuration can be transformed into another configuration. We prove that
the problems are NP-complete with 1 x 1 particles even when only allowed to move in 2 or 3 directions.

1 Introduction

The tilt model, proposed by Becker et al. [3], has foundations in classical motion planning. A couple of natural
problems that arise in these computational systems are those of relocation and reconfiguration. Relocation is the
problem of whether a sequence of tilts exists to relocate a tile from location a to location b. Reconfiguration asks if
a sequence of tilts exists to transform board A to board B (specifying the location of all tiles). These were shown
to be PSPACE-complete in 4-directions if a single polyomino larger than a 1 x 1 is in the system [1]. Here, we
discuss a variant of this model (introduced in [2]) where particles exist within a board and move, in uniform, single
unit distances (rather than maximally) in any of the four cardinal directions via an external force. These particles
move in said direction unless the path is blocked by some “concrete” space. Figure 1 shows a simple example. We
study these questions with only 1 x 1 tiles with limited usable directions (e.g. only tilting down and right). We
further look at the complexity of the board geometry. A specific class of boards used for our relocation problem is
“x /y-monotone” , which can also be called vertically/horizontally monotone.

Definitions. A board B is a rectangular region in Z? where positions are either open or blocked, meaning no tile
can be on this location. A tile/robot/particle is a 1 x 1 polyomino with a label and a position at some location in B.
A configuration C = (B, P) is the board and the set of tiles with their locations. A step is a cardinal direction
command d = {N, S, E, W} that transforms one configuration into another by translating all tiles a unit distance in
that direction unless the adjacent location is blocked or occupied by another tile. A step sequence is a series of steps

which can be inferred from a series of directions D = (dy, ..., dj) where each d; € D implies a step in that direction.

e ] [l [Fwdl Thd
(a) Init  (b) (N) (c) (E) (d) (E)

Figure 1: An example step sequence (N, E, F). (a) The initial board configuration. (b) The resultant configuration after
an N step. (c) The resultant configuration after an E step. (d) The final configuration after one more E step.

We also note that both problems are in NP, since with limited directions, there is a limited number of possible
steps before the configuration cannot change, or can only move between a small number of configurations.

2 Relocation

Here we show the relocation problem is hard with limited directions (two or three) even in a monotone board via a
reduction from 3-SAT.

Theorem 1. Given a monotone board, the relocation problem in the single step model is NP-complete when limited
to two or three directions.

The 3-SAT reduction utilizes gadgets that have binding locations on their top and bottom locations which is
how the gadgets connect to form chains. There are 3 chain gadgets: the literal chain, clause chain, and validation
chain. They connect at their binding locations to form one chain representing the 3-SAT formula. Every literal is
represented as one tile, and trapping it in a certain location on the board sets that literal to ‘true’. We place 3
literal tiles for every clause inside a clause chain, depicted in Figure 3c, and connect them to form the clause chain.

]
—
C1 01 1 i 51 1
(@) (b) (c) (@) (e) (f) (&)
Figure 2: Different individual gadgets.

The tile in Figure 2a will be relocated to the gadget in Figure 2g, which is the last gadget in the validation chain.
The validation chain contains tiles that force ‘appropriate’ assignments of the literal tiles— the validation tiles could
block the relocation tile. Moreover, if any clause is not satisfied, the ‘excess’ tiles from the clause chain will enter
the validation chain and block the relocation tile. The three chains force the proper assignment of literals and
checks the satisfiability of all clauses, allowing the relocaﬁi@n tile to be placed only if all the clauses were satisfied.

.
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Figure 3: (a) Demonstration of two gadgets (b) binding at their bottom locations. (¢) An example clause gadget. (d) Truth
assignment of some literal tile. (e) A truth assignment for a variable . The numbering on the tiles depict the step move
order. Setting literal x; to true is depicted in the upper three images, and setting it to false is depicted in the lower three.

3 Reconfiguration

Reconfiguration is a variant of relocation that ensures we know where every tile on the board is located. The input to
the problem is two configurations: an initial and final. We show that in two directions the problem is NP-complete
via a 3-SAT reduction. We will use South and East as the directions. Given a 3-SAT formula consisting of variables
{x1, 22,23, ..., T, }, separated into m clauses of the form (A V BV C) where each A, B,C is of the form z; or —x;,
we create an instance of the reconfiguration problem that is solvable if and only if the 3-SAT formula is satisfiable.

Theorem 2. The reconfiguration problem in the single step model is NP-complete when limited to two directions.

Figure 4a shows the basic structure of the clause gadgets and Figure 4b shows how variable tiles are placed. For
the clause, the variables must be placed in reverse order in the three slots at the bottom right. This can only occur
if one of the variables has a true value. Otherwise, one of the tiles will go into the wrong slot. In order to force
the constraints, the other gadgets, shown in Figure 5, specify the location of other tiles which can only be placed
correctly if the correct amount of S and E commands have been used. This prevents cheating in the clause gadgets.

4
5n+3 5n+3 —

[
E = idw‘r' AR
o - ﬂ steps
i Top Chamber Assignment Chamber b

i Bottom Chamber = TileTrap ~ Reconfiguration
""" Zone
(a) (b)
Figure 4: (a) 3-SAT clause gadget, where n is the total number of unique variables, and m indicates that this clause is

the m'" clause in the formula. (b) Example of variable placement for clause (z1 V =2 V x3) in a 5-variable formula. Goal
locations indicated by red arrows

10n+10

3 an

h____:: e, = I " ==L,
(a) (b) (<) (d) (e)

Figure 5: (a) South Limiter: Limits the amount of south steps made before all variables have been assigned. (b) South
Forcer: Forces the user to make south steps at specific times. (¢) Example of south limiter tile placement in a 5 variable
formula. Goal location indicated by red arrow. Post assignment zone highlighted in green. (d) Example of south forcer tile
placement in a 5 variable formula. Goal location indicated by red labels. (e) State of a clause gadget in which no variable
tiles evaluated to a literal true before and after the forced south tilt, and the respective states of the south limiter gadget.
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Abstract. We utilize the hardness of the Unambiguous-SAT problem
under randomized polynomial time reductions (Valiant & Vazirani; The-
oret. Comput. Sci. 47(1); 1986) to probe the required properties of coun-
terexamples to (open) non-existence conjectures for uniquely Hamilto-
nian graphs under various topological constraints. Concerning ourselves
with a generalization of Sheehan’s 1975 conjecture that no uniquely
Hamiltonian graphs exist in the class of (r € 2Nsq)-regular graphs,
Bondy & Jackson’s 1998 conjecture that no uniquely Hamiltonian graphs
exist in the class of planar N minimum degree 3 graphs, and Fleischner’s
2014 conjecture that no uniquely Hamiltonian graphs exist in the class
of 4-vertex-connected graphs, we prove that each conjecture is false if
and only if there exists a parsimonious reduction from #SAT to the
problem of counting Hamiltonian cycles on each graph class in question.
As the existence of a parsimonious reduction from #SAT allows for
the encoding of arbitrary Unambiguous-SAT problem instances, by the
Valiant-Vazirani theorem we have that hypothetical sets of counterexam-
ples for each non-existence conjecture cannot belong to any graph class
with a polynomial time testable property implying tractability for the
Hamiltonian cycle decision problem (unless NP = RP).

Discussion. The question as to whether the members of a given graph class can
be uniquely Hamiltonian (i.e. possess exactly one Hamiltonian cycle) has been
the subject of considerable research in graph theory and related fields over the
prior few decades. Interest in this question appears to have originated from a
proof of C. A. B. Smith, reported by Tutte in 1946 [8], that the set of Hamiltonian
cycles flowing through any given edge of a cubic (i.e. 3-regular) graph must have
even cardinality, and therefore, that any Hamiltonian cubic graph must have at
least three Hamiltonian cycles. After a bit of an incubation period, in the 1970’s
Thomason [6] extended the result of Smith to all graphs whose vertices uniformly
have odd degree, and Entringer and Swart [2] proved that V(n = 2k; k > 11)
there exists a “nearly cubic” uniquely Hamiltonian graph on n vertices with two
vertices of degree 4 and with all remaining vertices of degree 3 (see “Theorem
57 of ref. [2]).
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In the 1970’s, Sheehan also posed his famous conjecture [5] that no uniquely
Hamiltonian 4-regular graphs can exist, which, in observation of the fact that
every (r € 2N)-regular graph is the union of edge-disjoint spanning 2-factors,
would imply that no r-regular uniquely Hamiltonian graphs exist V(r € 2Ns1).
While there has been significant progress since this time on a proof of Sheehan’s
conjecture [4, 7], it remains open. This is likewise true for a related 1998 conjec-
ture of Bondy & Jackson [1] that no uniquely Hamiltonian planar graphs exist
having minimum vertex degree 3, and a more recent 2014 conjecture of Fleischner
[3] that no 4-vertex-connected uniquely Hamiltonian graphs exist.

In this work, we examine the topological structure of sets of counterexamples,
should they exist, to the non-existence conjectures of Sheehan [5], Bondy & Jack-
son [1], and Fleischner [3]. In Theorem 1 through Theorem 4 we show that each of
the aforementioned conjectures is false if and only if there exists a parsimonious
reduction from #SAT to the problem of counting Hamiltonian cycles on each of
the relevant graph classes — i.e. (r € 2N5)-regular graphs in the case of Shee-
han’s conjecture [5], planar N minimum degree 3 graphs in the case of Bondy &
Jackson’s conjecture [1], and 4-vertex-connected graphs in the case of Fleischner’s
conjecture [3]. We next observe that the existence of a parsimonious reduction
from #SAT in each case allows us to efficiently encode arbitrary instances of a
variant of satisfiability known as Unambiguous-SAT [9], where we are promised
the existence of at most one satisfying assignment to a given Boolean formula.
Accordingly, in Theorem 5 we use the Valiant-Vazirani theorem to show that,
unless NP = RP, no set of counterexamples for any of the listed non-existence
conjectures for uniquely Hamiltonian graphs can be contained in a graph class
with a polynomial time recognizable or testable property implying an efficient
solution for the Hamiltonian cycle decision problem.
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In this paper, we study the problem of gossiping with interference constraint in radio chain
networks. Gossiping (or total exchange information) is a protocol where each node in the network
has a message and wants to distribute its own message to every other node in the network. The
gossiping problem consists in finding the minimum running time (makespan) of a gossiping protocol
and efficient algorithms that attain this makespan.

Transmission model The radio chain network is modeled as a symmetric dipath P,,, where
the vertices represent the nodes and the arcs represent the possible communications. A call (s,r)
is defined as the transmission from the node s to the node r, in which s is the sender and r is
the receiver and (s,r) is an arc of the dipath. The network is assumed to be synchronous and the
time is slotted into steps. We suppose that each device is equipped with a half duplex interface,
and therefore, a node cannot both receive and transmit during a step.

Interference model Furthermore, communication is subject to interference constraints. We use
a binary asymmetric model of interference based on the distance in the communication digraph
like the ones used in [1, 2, 5]. Let d(s,r) denote the distance, that is the length of a shortest
directed path, from s to r in P, and d; be a non-negative integer. We assume that when a node s
transmits, all nodes v such that d(s,v) < d; are subject to the interference from the transmission
at s. So two calls (s,r) and (s’,") do not interfere if d(s,r’) > d; and d(s’,r) > d;. During a
given step only non-interfering (or compatible) calls can be done and we will define a round as a
set of such compatible calls. We focus here on the case where d;y = 1.

Main result Within this model, the problem has been studied in general in [4] where approx-
imation results are given in particular for ring and chain networks (see also the survey [3]). We
solved completely the gossiping problem in radio ring networks (work presented at JCDCG? 2017),
and presented partial results for radio chain networks (work presented at JCDCG? 2018).

In this talk, we present new gossiping algorithms for chain networks which meet the lower
bounds enabling us to prove the following theorem:

43



Theorem 1 The minimum number R of rounds needed to achieve a gossiping in a chain network
P, (n > 3), with the interference distance d;y =1 is

B 3n—5 ifn>4
R_{5 ifn=3
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Introduction and motivation Novem is an abstract strategic game designed by Gil Druckman and
published by Tactic in 2008. It won the “Arets Spel Best Adult Game” award in 2008 [1]. To the best
of our knowledge, this game was not yet studied or solved.

While (board) games are usually played sequentially (e.g. Chess, Go, Hex, Poker, ... ), Novem consists
of simultaneous moves. The most famous simultaneous game is certainly Rock-Paper-Scissor (RPS), in
which two (or more) players have to choose one of three hand gestures. RPS is trivially solved and the
optimal strategy is the uniform strategy. There exist other simultaneous games that are (1) interesting,
in the sense that they are played by real (human) players, and (2) non-trivial, which makes them worth
studying. We know at least three such games that have already been studied; Colonel Blotto, Goofspiel,
10000yens. The main difference between them and Novem lies in the duration of a game. These three
games run for a finite number of rounds; 1, 10, and 13 round(s) respectively.! On the contrary, Novem is
not a bounded game; ending a game may require an unbounded number of rounds. Note that, in Novem,
there is no terminating rule similar to the 50-move rule which exists in Chess.

Rules of Novem The game is played using a 3 x 3 grid where tiles numbered from 1 to 9 are disposed
on two layers (left of Figure 1 for initial board). At each round, the first player (P1) selects a row; A, B,
or C, and the second player (P2) selects a column; 1, 2, or 3. Both choices are revealed simultaneously
by the players. In the odd (resp. even) rounds, P1 (resp. P2) collects the visible tile located on the
cell designed by the combined choices of row-column. If the designed cell is empty, no tile is collected in
the round. The game ends as soon as one row or column is completely empty. The winner is the player
whose sum of collected tiles is higher. Note that the game may end in a draw if both players collected
the same total. Complete rules can be found on the publisher website [2].
We also consider a simplified version played with a single layer of tiles (right side of Figure 1).

1

A @
(6]
[ (8)

Figure 1: Initial boards of Novem (superimposed tiles are shifted to allow reading of both values)

)| & | & |
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Contributions Our goal is to solve the game. For Novem, it means finding optimal strategies and the
corresponding expected outcome, i.e. computing Nash Equilibrium. We define the outcome as 1 if P1
wins, 0.5 if the game is drawn, and 0 if P2 wins. Our results are summarized below.

LGoofspiel and 10 000yens can be generalized, but the number of rounds will always be fixed.
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Figure 3: Configuration with irrational
optimal strategies. Current score for
P1(blue) is 14 and for P2(red) is 7.
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Figure 2: Deadlock configuration. Current score for
P1(blue) is 33 and for P2(red) is 32.

1. Design issues We observed that Novem has some design issues which may lead to deadlock
configurations.? Figure 2 depicts an execution of the game leading to a deadlock. P1(blue) collected 33
points, P2(red) collected 32 points, and there remain only four tiles on the board. To avoid an immediate
loss, both players should obviously prevent their opponent to collect the tiles 7 or 8. We can also show
that each player should avoid collecting the tile 1 because it would favor their opponent. The intuition
is that collecting the tile 1 makes the tile 9 become visible and thus increase the winning chance of next
collecting player. Therefore, no player will ever collect a tile in this configuration!
There is no such deadlock in the simplified single-layer variant, hence our decision to study it.

2. Not rationally solvable Optimal strategies cannot be expressed as rational mixing of pure strate-
gies, not even for the single-layer version of the game. Figure 3 represents a configuration with only
three tiles remaining on the board. The game ends as soon as any player collects one more tile; P1 wins
if she collects any tile, while P2 wins with tiles 8 or 9, but achieves only a draw with tile 7.

Assuming P1 is next to collect, the (irrational) optimal outcome is 5453/5 ~ 0.72. The following
(irrational) mixed strategies are optimal and unique:

e When P1 is collecting: {A:1, B:3,C:1} and {1:4, 2:1,3:1}.

e When P2 is collecting: {A:3_4\/g, B: _1;@’0:3_4\@} and {1:3_4\/5, 2: _1J2”/g,3:3_4\/g}.

Here, there is no optimal rational mixing. It is not a big problem from a theoretical point of view, but
it makes exact computation much harder, that is why we computed only numerical approximations.

3. Numerical computations We computed numerical approximations of optimal strategies and
expected outcome. Detailed results will appear in the longer version of the paper. For the single-layer
version, when both players play optimally, the expected outcome is ~ 0.686 which means that P1 is
favored (not a surprise). With a komi of 3 (“free points” initially given to the second player), the single-
layer game is almost fair; the expected outcome is approximately 0.499. With a komi of -7.5 (i.e. 7.5
points given to P1), P1 has a simple winning strategy. Conversely, to guarantee a win for P2, the game
should be played with a komi of 10.5 (or 10 + € for any € > 0).
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2Tt does not really disturb real players. The game is still fun to play! But it is a problem when trying to solve the game.
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In an edge-matching puzzle, we are given several tiles (usually identical in shape), where each
tile has a label on each edge, and the goal is to place all the tiles into a given shape such that shared
edges between adjacent tiles have compatible labels. In unsigned edge matching, labels are compatible
if they are identical; in signed edge matching, labels have signs, and two labels are compatible if they
are negations of each other. Physical edge-matching puzzles date back to the 1890s; perhaps the most
famous example is Eternity II which offered a US$2,000,000 prize for a solution before 2011.

Previous work. The complexity of edge-matching puzzles has been studied since 1966. The most
relevant work to this paper is from two past JCDCG conferences. In 2007, Demaine and Demaine [DDO07]
proved that signed and unsigned edge-matching square-tile puzzles are NP-complete and equivalent to
both jigsaw puzzles and polyomino packing puzzles. In 2016, Bosboom et al. [BDD'17] proved that
signed and unsigned edge-matching square-tile puzzles are NP-complete even when the target shape is a
1 x n rectangle, and furthermore hard to approximate within some constant factor.

Our results. In this paper, we analyze the complexity of several variants of the edge-matching problem
by varying the tile shape, target board shape, label compatibility condition, and number of players.
Table 1 summarizes our results, which we now describe.

Compatibility Board Tiles Players Complexity

< 1xn square 1-player NP-complete

< mXxXn square 1-player P

Signed /unsigned 1xn square 1-player  (2-)ASP-hard,* #P-complete
Signed/unsigned 1xn equilateral triangle 1-player ~NP-complete, #P-complete
Signed/unsigned 1xn right triangle (hypotenuse contact) 1-player =~ NP-complete, #P-complete
Signed/unsigned g xn  right triangle (leg contact) 1-player P, #P-complete
Signed/unsigned O(1) x n  square/triangular with O(1) colors 1l-player P

Signed/unsigned shapeless square 1-player ~ ASP-hard, #P-complete
Signed /unsigned 1xn square impartial 2-player =~ PSPACE-complete

Signed 1xn square partisan 2-player PSPACE-complete

Table 1: Our results on edge-matching puzzles. *Our proof gives ASP-hardness for 1 xn edge matching
only when at least one boundary edge is colored; otherwise, each solution can be rotated 180 degrees
to form another valid solution, so we get 2-ASP-hardness (NP-hard to find a third solution given two).

Inequality edge matching. Our most involved result is an NP-hardness proof for a new “<” com-
patibility condition, where edge labels are numbers, horizontally adjacent edges match if the left edge’s
number is less than the right edge’s number, and vertically adjacent edges match if the top edge’s number
is less than the bottom edge’s number. We prove NP-hardness of <-compatible 1 x n edge matching by
reduction from another new NP-hard problem, interval-pair cover. The <-compatibility condition (where
equal numbers also match, or we assume all labels are distinct) turns out to be substantially easier: even
rectangular puzzles turn out to be always solvable, and we give a polynomial-time algorithm.

*Massachusetts Institute of Technology, Cambridge, MA, USA
T Tufts University, Medford, MA, USA
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ASP/#P-completeness for 1 X n edge matching. Of independent interest, we prove ASP-
completeness of Hamiltonian path with specified start and end vertices in max-degree-3 directed graphs,
by modifying the clause gadget from Plesnik’s NP-hardness proof [Ple79] and parsimoniously reducing
from 1-in-3SAT instead of 3SAT. We then use this result to prove ASP-completeness for signed and
unsigned 1 x n edge-matching puzzles when the left boundary edge is colored (to prevent trivial rotation
of solutions), and 2-ASP-hardness and #P-completeness even if the boundary is colorless.

Triangular edge matching. The conclusion of [BDD"17] claimed that the paper’s results extended
to equilateral-triangle edge matching, but the proposed simulation of squares by triangles is incorrect
because it constrains the orientation of the simulated squares. We extend our 1 x n parsimonious proof
to obtain NP-hardness (but not ASP-hardness) for signed and unsigned edge matching with equilateral
triangles, with or without reflection.

For right isosceles triangles, there are two natural “1 x n” arrangements. For clarity, we assume the
legs of the triangles have length 1. If we still want a height-1 tiling, then length-v/2 hypotenuses are
forced to match, so matching is NP-complete by simulation of squares. But if we ask for a height—?
tiling, so only legs match, we show surprisingly that both signed and unsigned edge matching can be
solved in polynomial time using an algorithm based on Eulerian paths.

Of independent interest, we characterize when a directed graph admits an Eulerian “path” that
alternates between going forward and going backward along edges.

Shapeless edge matching. We prove that square-tile edge-matching puzzles remain NP-, ASP-, and
#P-complete when the goal is to connect all tiles in any (unspecified) single connected shape, with either
signed or unsigned compatibility. The proof builds a unique spiral frame that effectively forces a 1 x n
edge-matching puzzle with a fixed left boundary color.

2-player edge matching. We consider natural 2-player variants of 1 x n edge-matching puzzles, where
the players alternate placing a tile in the leftmost empty cell and the first player unable to move loses
(normal play). We prove PSPACE-completeness for both signed and unsigned square-tile edge matching
when players can play any remaining tile, and for signed edge matching when players play from separate
pools of tiles.
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Is Every Prime Sum Graph Hamiltonian?

Hong-Bin Chen* Hung-Lin Fuf Jun-Yi Guo?

1 Extended Abstract

This paper is motivated from a result, by Greenfield and Greenfield in 1998 [4],
concerning prime numbers.

Theorem 1.1. /4]
The set of integers {1,2,3,--- ,2n}, n > 1, can be partitioned into pairs {a;,b;} such
that a; + b; is prime for all i =1,2,--- . n.

Theorem 1.1 was proved by L. Greenfield and S. Greenfield in 1998 [4] and re-
produced by D. Galvin in 2006 [3]. This lovely result follows with an elegant proof
from the well-known Bertrand’s Postulate, or sometimes called Bertrand-Chebyshev
Theorem [1, 6].

Theorem 1.2. [1, 6] For any positive integer n > 1, there is at least a prime p such
that n < p < 2n.

From another point of view, it is natural to think of a graph that treats numbers
as vertices where two vertices are adjacent if the sum of the corresponding numbers
is a prime. We first give a formal definition of the mentioned graph. For any positive
integer n, define a graph G, = (V, E) with the vertex set V = {1,2,--- ,n} and
E = {ij : i+ j is prime}. We call G,, the prime sum graph of order n. Theorem 1.1
can then be rephrased in the terminology of Graph Theory, i.e., Gg, has a perfect
matching. Inspired by Theorem 1.1, we are interested in the structure of such a graph.

Antonio Filz [2] was the first to notice the prime circle phenomenon and calculate
how many prime circles are there for 2n < 10. He posed an interesting question that
“are there prime circles for all 2n?” This conjecture is also collected in the well-known
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40249, Taiwan (Email: andanchen®@gmail.com) The author is supported by MOST 105-2115-M-
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was a member of Department of Applied Mathematics, Feng Chia University, Taichung 40724,
Taiwan.

TDepartment of Applied Mathematics, National Chiao Tung University, Hsinchu 30050, Taiwan
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book ‘Unsolved Problems in Number Theory’ by Richard K. Guy [5]. However, to
the best of our knowledge, it has been attracted little attention and still open for
decades. We reformulate it as follows.

Conjecture 1. [2] The set of integers {1,2,3,--+,2n}, n > 2, can be rearranged in
a circle such that the sum of any two adjacent numbers is a prime. In other words,
Go, contains a Hamilton cycle.

In this paper, we prove the following result.

Theorem 1.3. There are infinitely many Gay,’s that have a Hamilton cycle.
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Abstract

Consider a 3-dimensional Euclidean space with a chosen Cartesian coordi-
nate system of three fixed mutually perpendicular directed lines, commonly
referred to as the z-axis, the y-axis and the z-axis. Let such a space be di-
vided into unit cubes, that is, the eight corners of a cube have coordinates
(z,y,2), (@+1,y,2), (z,y+1,2), (x+1L,y+1,2), (z,y,2+1), (x+1,y,2+1),
(x,y+1,z+1)and (r+ 1,y + 1,z + 1) for some integers x, y and z. A poly-
cube is defined as a finite, nonempty and connected set of unit cubes where
connection is established by sharing a square face. Polycubes which just have
one layer also can be viewed as polyominoes. Up to now, polycubes have been
a source of topological or combinatorial problems.

SL block, proposed first by Shih [4], is an octocube consisting of an S-
shaped tetracube and an L-shaped tetracube attaching to each other along
sides. An SL block may interlock with other SL blocks to form variations of
stable structures, and requires no nail, glue or any other adhesive material.
The property of self-interlocking makes SL block expressive to explore the
beauty of symmetry, which has been generally acknowledged as an essence of
art and mathematics. Various shapes of octocubes have been examined based
on the feasibility and flexibility of creating interlocking configurations. SL
block is so far the one most interesting and promising.

In this talk, we will have a brief introduction about polycubes and SL
blocks first. Then we analyse the connecting and combining ways between
multiple SL blocks systematically in order to uncover all compositions of
extensible and interlocking structures. Finally, we propose some results by

observing an unexpected transformation between polycubes and the configu-
rations of SL blocks.

Keywords: Polycube; SL block; Self-interlocking; Infinite extension.
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Representing a family of geometric objects in the digital world where each object is represented
by a set of pixels is a basic problem in graphics and computational geometry. One important criterion
is the consistency, where the intersection pattern of the objects should be consistent with axioms of
the Euclidean geometry, e.g., the intersection of two lines should be a single connected component.

In geometric computation, we often experience that finite-precision computation causes geometric
inconsistency. This is because the representation of geometric objects in the pixel world does not
always satisfy geometric properties such as Euclidean axioms. Figure 1 shows that a naive definition
of digital lines may cause inconsistency that the intersection of a pair of them may have more than
one connected components.

Intersection

Figure 1: Inconsistency of intersection (green pixels) of two digital line segments

Thus, it is important to seek for a digital represention of a family of geometric objects such that
they satisfy a digital version of geometric properties. We propose the consistent digital curved rays
in this paper, generalising consistent digital rays for straight lines[1, 4].

We consider the triangular region A defined by {(z,y) : * > 0,y > 0,2 + y < n} in the plane,
and the integer grid G = {(i,7) : 4,5 € {0,1,...n},i+ j < n} in the region. We can also handle a
square region, but use A for ease of description of our method.

Each element of G is called a pixel (usually, a pixel is a square, but we represent it by its lower-
left-corner grid point in this paper). We say a pixel is a boundary pixel if it lies on z +y = n.
We consider an undirected graph structure under the four-neighbor topology such that (i, j) € G is
connected to (k,£) € G if (k,¢) € {(i —1,7), (4,5 —1),(i+1,7), (4,7 + 1)}

A digital ray S(p) is a path in G from the origin o to p, where S(0) = {0} is a zero-length path.
A family {S(p) : p € G} is called consistent if the following three conditions hold:

1. If ¢ € S(p), then S(q) C S(p).
2. For each S(p), there is a (not necessarily unique) boundary pixel r such that S(p) C S(r).

3. Each S(p) is a shortest path from o to p in G.
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Figure 2: CDR for linear rays and parabolic rays in the triangular region of a 20 x 20 grid, and
sampled linear and parabola digital rays in a 300 x 300 square grid.

The consistency implies that the union of paths S(p) form a spanning tree T in G such that all
leaves are boundary pixels as shown in Figure 2, and accordingly intersection of two digital rays
consists of single connected component. The tree T' and also the family of digital rays are called
CDR (Consistent Digital Rays).

Previously, the theory has been considered only for digital straightness[3]. Lubby [4] first gave
a construction of CDR so that each S(p) simulates a linear ray within Hausdorff distance O(logn),
and showed that it is asymptotically tight. The construction was re-discovered by Chun et al.[1] to
give further investigation, and Christ et al.[2] gave a construction of consistent digital line segments
where the lines need not go through the origin.

We will extend the theory to families of curves with the same topology as linear rays. In Figure
2, the combinatorial difference between tow CDRs can be observed. The difference leads to the
visual difference of digital rays in illustrated in the second and fourth picturesin Figure 2, where it
can be seen that the digital rays approximate parabolas in the right picture much better than the
left one.

A family F of nondecreasing curves in A is called ray family if each curve goes through the origin
o, and for each point (z,y) € A\ {0} there exists a unique curve of F going through it. We call a
ray for an element of F. Accordingly, each pair of rays intersect each other only at the origin. A
typical example is the family of parabolas y = ax? for a > 0.

We give a construction method of CDR T in G such that the (unique) ray of F connecting o
and a pixel p is simulated by the path S(p) well, and show an O(y/nlogn) bound of the Hausdorff
distance for several ray families.

Although the theoretical bound is much worse than the O(logn) for the linear ray, it is the first
nontrivial result for curved rays as far as the authors know, and experimentally the construction
works better.
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1 Introduction

In this paper, we consider only finite undirected simple graphs.

Let GG be a graph and F be a set of connected graphs, G is said to be F-free if G does not contain any member
of F as an induced subgraph. We let G denote the set of all connected graphs with order greater than or equal to
3 and for k > 2, let G, (F) denote the set of all k-connected F-free graphs. The members of F are referred to as
the forbidden subgraphs. We let A(G) denote the maximum degree of G.

Fugisawa et.al. [2] completely determined the sets F with |F| = 3 for which G(F) is finite. In [3], some
sets F of forbidden triples have been identified for which G3(F) is finite. In this study, we determine forbidden
triples F that do not contain a star where G4(F) is finite.

The following corollary is found in [3] .

Corollary 1.1. Let F C G with |F| = 3, and suppose that F does not contain a star and G4(F) is finite.
Then there exists integers n,my,mg with (n,m1) € {(3,4),(3,3),(5,2),(4,2),(3,2)} and my < mg such that
F ={Kn,Km, m,, T}, where T is a tree with A(T') < 4.

In this study, we aim to give a refinement of the above Corollary by describing 7" more particularly.

Our notation is standard, and is mostly taken from Diestel [2]. Possible exceptions are as follows.

We let P, denote the path of order [. A caterpillar is a tree for which the removal of all endvertices leaves a path.
The complete bipartite graph with partite sets of cardinalities 7 and n is denoted by K, ,,. In particular, the K ;
with ¢ > 1 is called a star.

Let n be an integer with n > 2. Let P = z129---x, be a path of order n, and let y;, y2, y3, 21, 22 and
z3 be six distinct vertices different from 125 - - - x,. Let Y, and Y’ denote the graphs defined by V(Y,,) =
V(P)U {y1,92}. V(Y3) = V(P) U {y1,y2. 21,2}, E(Yin) = BE(P) U {2191, 2130} and B(Y) = E(P) U
{z1y1, T1Y2, Tnz1, Tnze}. Let X, and X denote the graphs defined by V(X,,) = V(P) U {y1,v2,¥3},
V(X)) = V(P) U{y1,y2,03, 21,22, 23}, E(Xyn) = E(P) U{z1y1, 2192, 2193} and E(X}) = E(P) U
{z1y1, T1Y2, X1Y3, Tpn21, Tn22, Tn 23 }. Let Z) denote the graph defined by V(Z) = V(P) U {y1, Y2, Y3, 21, 22}
and E(Z*) = E(P) U {z1y1,%1Y2, T1Y3, Tn21, Tn22} (see Figure 1).

Let 7Ty be the set of trees in G \ { K7 2, K7 3, K1 4} having maximum degree at most 4. Let 77 be the set of
those caterpillars belonging to 7 in which no two vertices of degree 4 are adjacent. Let

E:{PS,Xml,X* Yo, Y, Z | s >4, my,ma,ny,t >3, n222}.

mar tN1y Lng

X3 :\7-—0—0 X;’;*:E)—o—é Z;:.:>b—o—<

Figure 1: The following graphs are examples of X,,,, X,  and Z;

55



2 Results

The following Theorem is our main result.

Theorem 2.1. Let F C G with |F| = 3, and suppose that F does not contain a star and G4(F) is finite. Then
one of the following holds:

(i) F ={Ks, Ky m,, T} withd <mq <4, whereT € Ty ;
(i) F ={Km,, Ko m,, T} with4d < my < 5andmy > 2, where T is a path or;

(i) F = {Ks3, Kom, T} withm > 2, where T € Ty in the case where m = 2, T € Ty in the case where
3<m<4andT € Ty in the case where m > 5.

In order to prove Theorem 2.1, we prove the following two lemmas.

Lemma 2.2. Let my and my be integers such that ma > mq > 2, my < 4 and (my,ms) # (2,2). Let T be
a tree with A(T') < 4, and suppose that { K3, K., m,, T} does not contain a star and G4({ K3, Ky, m,,T}) is
finite. Then the following hold.

i TeT:.
(i) If in addition, (mq, ms2) ¢ {(2,3),(2,4)}, then T € Ta.

Lemma 2.3. Let my and my be integers such that 4 < my < 5and mg > 2. Let T be a tree with A(T') < 4, and
suppose that { K, , Ko m,, T} does not contain a star and G4({ K., , K2,m,,T'}) is finite. Then T is a path.
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The study of colored point sets has attracted a lot of attention, particularly
for 2-, 3-, and 4-colored point sets, see [1], [2], and [3]. For every 1 <i < mn, let
S; be the set of elements of S colored with color ¢;. We will assume that each S;
is non-empty and that S = S; U---U S, is in general position in the plane.

Given an n-colored point set S, a simple polygon P is called a perfect rainbow
polygon if it contains exactly one point of each color. We are interested in finding
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the smallest number r,,, called rainbow index, such that any n-colored point set
has a perfect rainbow polygon with at most r,, vertices.

It is well known that for every 3-colored point set S, there exists an empty
triangle such that its vertices are in S and have different colors, that is, r3 = 3.
In this work, we determine the exact values of r, up to the first case where
rn > n, see Table 1.

n|3|4]5|6|7
| 3141568

Table 1: Values of the rainbow index r, up to the first case with r,, > n.

Moreover, for general n, we show the following lower and upper bounds on r:

20n728< < 1On_~_11
—_— <, < — .
19 - 7
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1 Introduction

All graphs considered in this paper are finite and simple. Our notation in this paper is standard.
For a graph G = (V(G), E(G)), let «(G) be the independence number of G. Also, let o/ (G) be the
size of a maximum matching of G. Let (G) be the vertex-connectivity of G. For other terminology
and notation not defined here, we refer the reader to [12]

An edge-colored graph G is properly colored if no two adjacent edges share a color in GG. Properly
colored paths and cycles appear in a variety of fields such as genetics [4, 5] and social sciences [3].
An edge-colored connected graph G is properly connected if between every pair of distinct vertices,
there exists a path that is properly colored. In [1], Borozan et al. defined a new notion called the
proper connection number pc(G) of a connected graph G, where pe(G) is the minimum number of
colors needed to color the edges of G to make it properly connected.

Recently, the notion of proper connection number attracts much attention from both theoretical
and practical aspects, and thus a lot of work has been done extensively (see e.g., [2, 7, 8, 9, 11]).
For details in this recent topic, we refer the reader to the nice survey of Li and Magnant [10].

In this paper, we are concerned with making an edge-colored graph properly connected efficiently.
Let (G, c¢) be a connected graph with a given edge-coloring c¢. Now we consider how to make (G, ¢)
properly connected by recoloring some edges with some colors. To minimize our effort to make G
properly connected, it would be natural to focus on the minimum value on the sum of numbers of
edges and colors among such recolorings. Note that, such a value should be zero when (G, c) is
already properly connected.

Perhaps the most fundamental and laborious case to this problem would be the case where ¢
assigns a common color on every edge of (7, that is, the case where GG is a monochromatic colored
graph. Therefore, in this paper, we shall initiate this study by assuming that all edges of G have
already been colored by a common color, say color 0. When ¢ # 0, color 7 is called a new color.

Keeping this assumption in mind, we define the following cost function of edge-colored graphs
called the optimal proper connection number for a monochromatic connected graph G.

PCopt (G) := min{p + ¢q| we can make G properly connected

by recoloring p edges of G with ¢ new colors}.

For a monochromatic connected graph G, suppose that G becomes properly connected by recol-
oring p edges of G with g new colors such that p+ ¢ = pcopi (G). Then we call such an edge-coloring
of G an optimal recoloring of G.

By definition, note that pcop:(K,) = 0 holds because any monochromatic complete graph is
properly connected. Indeed, we see that a graph G satisfies pcyp(G) = 0 if and only if G is
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isomorphic to a complete graph. We can easily determine pc,p:(G) for small graphs and some basic
family of graphs. For example, we can check that pcopi(K23) = peopt(K33) = 3, pCopt(K3,4) =
pcopt(K4,4) = 47 pcopt(Kl,m) =2m — 27 pcopt(cn) = pcopt(Pn) = L(TL - 1)/2J + 1.

2 Main results

Our main results are following.

Theorem 1. If G is a monochromatic connected graph of order n > 1 such that o(G) < 2 then
Peopt(G) < 3.

Theorem 2. Let G be a monochromatic complete bipartite graph K, , such that m > n > 2 and
m+mn>9. Then pcop(G) =4 forn =2,3, and pcopt(G) =5 for n > 4.

Theorem 3. If T is a monochromatic tree of order n > 2 then pcop(T) =n —2— o/ (T) + A(T).

Please see the full paper [6] for the proofs of our main results.
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We show that any two bread graphs are connected by inserting a path graph of order three.

For an operator called Dirac operator in [1], Sykora studies the correspondence between Graph theory and
Effective membrane theory by using deformation adjacency matrices. The lowest energy states of the Dirac
operator with respect to a graph embedded in R? give algebraic equations. He numerically suggests that the
algebraic surface created by the equation has a form that plumped out the embedded graph.

To pursue his idea to clarify the relationship between the embedded graphs and algebraic surfaces, we
introduced the following definition at the previous JCDCG? conference[3]. Below, all graphs G = (V, E, W)
represent weighted simple undirected graphs.

Definition 1 (z-axial embedding[3]). Let G = (V, E, W) be a graph, where V = {v},...,v),}. For a vertex set
V, fix v1 := v;, and rewrite vertex indexes in order of distance of the graph dg(vi,-) from v; as follows. Let sy
be an element of the symmetric group S,

sk vl v = v, o), v e s (v))
and the index of v; is determined to satisfy

i<j if dg(vi,v;) <dg(vi,vj)
i<j if dg(vi,v) =dg(vi,vj), sk(v],v),) = (vi,v;), | <m.

The z-axial embedding ¢ : V' — R3, v; — (z4,v:,2i), for v;,v; € V is defined to satisfy the following two
conditions: (i) if ¢ < j and dg(vi,v;) # dg(v1,v;), then z; < z;. (ii) if ¢ < j and dg(v1,v;) = de(vi,v5), then
z; < zj. Here, if z; = z;, then let v; and v; be not adjacent. Each e;; € I connecting v; and v; is embedded as

a segment ¢(v;)¢(v;).

Definition 2 (Deformation adjacency matrices[1]). For a z-axial embedding of G = (V, E, W), deformation
adjacency matrices X = (X;;), Y = (Yi;), Z = (Z;;) of size |G| x |G| are defined as follows.

1. The diagonal entries of the matrices are
Xk = T, Yak = Uy, Zrk = 2k, (1 <k <GY).
Here t(vg) = (zk, Yk, 2k ), for v € V.
2. The off-diagonal entries of the matrices are

Xjk = ij = Wj € R,
Vi = —iwsr, = Yiy, (1 <4 k<|G|, j#k)
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where wj is the weight of edge ej), connecting v; and vy, Y is the complex conjugate of Y and the
coefficient i is an imaginary unit.

3. The other entries of the matrices are 0.
From this definition, the matrices X,Y and Z are Hermitian matrices.

Definition 3 (Dirac operator [2]). Let X,Y,Z be the deformation adjacency matrices of G and (z,y, z) € R3
be the coordinates of the space to embed vertices. Dirac operator is defined as

D:=9'® (X -zE)+7*® (Y —yE)+ @ (Z — 2E),
where 7% is Pauli matrix and F is the unit matrix.

Definition 4. (Bread graph)
For G = (V, E,W), z-axial embedding ¢ and Dirac operator D, we define a bread graph B(G,t, D) as

B(G,t,D) :={(z,y,2) € R*| det D = 0}.

We discussed conditions that a bread graph and an embedded path graph are homotopic. Especially, the
case that the path graph has two vertices was discussed in detail[3].
This time, we develop these discussions as follows.

Definition 5. Let G; and G2 be any graphs that are not connected to each other and P, be a path graph
of order n. We defined G(G1,G32) as a connected graph made by sharing the endpoints of P3 by Gy and Gs
respectively.

For the path graph Ps, we denote vertices shared in G; and G2 by vg, and vg, respectively, and a vertex
of degree 2 by vs.

Theorem 0.1. For arbitrary G(G1,G2), if t(vg,) = (0,0, —a), ¢(0,0,a) fora > 0 and a < 4r then B(G(G1,G2),t, D)
is connected, where r = wag, = Wag, 1S weight of edges eaz, and eaq, .

This theorem means that a bread graph can be expanded by other graphs like a handlebody. A new bread

graph with higher genus can be made by connecting several bread graphs with lower genus.
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1 Introduction

In 1966, Leo Moser [2] posted a famous unsolved problem in geometry which asks for
the smallest area of the region in the plane, which, is possibly rotated and translated,
can cover all curves of unit length. A version of this problem asks for the smallest area
B of convex region which can cover all closed curves of unit length. The best known
upper and lower bounds for this problem were < 0.11023 [3] and § > 0.0975 [1].

In this work, we use geometric methods combined with the Box search algorithm
to prove that the area of convex cover for the line segment of length 0.5, circle of
perimeter 1, and rectangle of size 0.1727 x 0.3273 is at least 0.1, which implies a new
lower bound 8 > 0.1.

2 Geometric Analysis

Let C be a circle of perimeter 1, R be a rectangle of size 0.1727 x 0.3273, and L be a line
segment of length 0.5. We fix the center of circle to be Cy(0,0). Let F be a regular 500-
gon inscribed in C, such that the sides of R are parallel to one of the longest diagonals
of F. Let X be aunion FURUL. X is called a configuration. Let .7 (X) be the convex
hull of X, and .27(X) the area of .#(X). Let f: R> — R be a function by mapping
vector (x1,y1,X2,¥2,0) to o/ (X), where Ro(x1,y1),Lo(x2,y2) are the centers of R and
L respectively, and 0 is the angle between X axis and LyL,, where L, is a vertex of L.

Lemma 1. Let Z be the region of points 7 = (x1,y1,X2,y2,0) in R> satisfying the in-
equalities

0<x; <0.0741, 0 < y; <0.0976, —0.148 < x» < 0.148, —0.148 <y, <0.148, 0< 0 < .

If f(z) > 0.1 for all z € Z, then in fact f(z) > 0.1 for all z € R>.

Lemma 2. For every (x1,y1,%2,y2,0) €Z, and any & > 0,i=1,...,5,

e

|f(x1 +&,y1 +&,x0+8,y2+&,0 +&5) — f(x1,y1,%2,)2,0)| < ) &G,

i=1

with constants C; = 0.306, C; = 0.443, C3 =0.392, C4 = 0.449, and C5 = 0.115.
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3 Computational results

We run the Box-search algorithm [1] by using Matlab® R2016a. The programme
halts after n = 527,754,566 iterations. This rigorously proves that the minimal area
is greater than 0.1. Numerically, the program returned value 0.10044 for this mini-
mal area, with optimal configuration x; = 0.00434, y; = 0.00648, x, = 0.00434, y, =
—0.00434, 6 = 0.85711

Theorem 1. The area of convex cover S for circle of perimeter 1, line of length 1/2,
and rectangle of size 0.1727 x 0.3273 is at least 0.1.

Corollary 3. Any convex cover for closed unit curves has area of at least 0.1.

™Y

Figure 1: The convex hull of the configuration of the minimum area with 0.10044
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One-question-card Version of the Hamming Code Mathemagic

Junyi Guo, Chao Yang, Hsiang-Chun Hsu

In the classic version of this magic trick, the magician asks one spectator thinking
of an integer between 0 and 15 and keeping it in his mind. Then the spectator is allowed
to ask four yes-or-no questions that whether the chosen number appears on the following
four cards.

4 5 6 U 8 9 10 11

12 13 14 15 12 13 14 15

After that, the magician will immediately know what is the number in spectator’s
mind. The secret mainly depends on the encoding of these four cards. Actually, it’s well-
known, whether the numbers are on the i-th card is according to the i-th digit of the
binary number is 1 or not. Theoretically, this trick can be extended to any n numbers
with O(log n) question cards.

Richard Ehrenborg [1] and Todd Mateer [2] modified this trick to the version that
the spectator is allowed to lie at most once by asking 3 more questions. After 7 yes-or-no
questions, the magician reported both the number the spectator chosen and the card the
spectator lied. These question cards are encoded by Hamming code. The former 4
question cards are correspondent to the 4 information bits of [7,4,3]-code, and the new 3
cards are the 3 parity-check bits.

1 2 5 6 1 3 B! 6 2 3 | 5
8 11 12 15 8 10 13 15 8 9 14 15

In general, for any positive integer n, the magician also needs O (log n) question
cards. In this talk, we reduce the number of question cards to O(1). Actually, we need
only 1 base card and 1 question card.

The main idea is de Bruijn sequence. There are 227"~k different de Bruijn
sequences of order k. For k = 4, we choose any one of the de Bruijn sequences as
follows:

0000111101100101.
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Its decimal sequence is: 0, 1, 3,7, 15, 14, 13, 11,6, 12,9, 2, 5, 10, 4, 8. Then we
put them in a circle as our base card. Besides, we just need the other circle question card
with 8 holes corresponding to the odd numbers. By the property of de Bruijn sequences,
we show these two cards are enough to perform the same classic magic trick by rotating
the question card and putting the red hole on the top of the numbers 1, 2, 4, 9.

—

14 15 7
13 3
11
6 |
\ 12
9 4
2 . 10

In I-error-correcting version, this idea also works but a little differently. We
remove the number 0, and to select another de Bruijn sequence carefully. This time we
choose

0100110101111000.

And the base card and the question card are as follows. Then we can perform the
1-error-correcting magic trick by putting the red hole on the top of the numbers 1, 2, 4, 9,
6, 15, 5 which correspond to the 7 question cards as the former.

VA

\ [ (M \
l< N\ \

NN

For any 2¥ numbers 1-error-correcting magic trick, we prove that there exists a de
Bruijn sequence of order k which can be used for the 1-question-card design.
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1 Introduction

Large networks such as the WWW and the protein-
protein interaction network (PIN) are called com-
plex networks. Some common properties have been
found among complex networks. Many models
that produce networks having such properties have
been proposed, e.g., Watts-Strogatz model achieves
the small-world property[8], and Barabasi-Albert
model achieves the scale-free property[1]. However,
the properties of complex networks are not revealed
completely yet, and hence many new models that
sutisfy such properties are still being proposed for
interpreting complex networks. One of the atten-
tional properties that complex networks may have
is hierarchy. In 2005, Newman and Sohler presented
a universal tester, which can test every property, for
bounded-degree hyperfinite graphs[6]. In 2016, Ito
presented a class, called HSF, of multigraphs satis-
fying scale-freeness and hierarchy, and showed that
Newman and Sohler’s algorithm can be applied even
though the class is not bounded-degree[5]. From
the observation of it, if a graph class satisfies both
scale-freeness and hyperfiniteness, the algorithms of
[6] can be also applied. In this talk, we show that
three well-known models of complex networks that
obey hierarchy are all hyperfinite. Consequently,
we proved that every property is testeble on these
classes.

2 Definitions

Two graphs G; = (V1, F1) and Gy = (Va, Es) are
isomorphic if there is a one-to-one correspondense
m : Vi — V5 such that (u,v) € Ej if and only if
(m(u),m(v)) € Ey for every pair u,v € Vi. A graph
property (or property , in short) is a family of graphs,
that is closed under isormophism. For two graphs
G1 = (V17E1) and G2 = (VQ7E2) with |V1| = |V2‘ =
n, m(G1,G2) is the number of edges that we need

to delete or insert in order to make G isomorphic
to G'. Distance dist(G1, G2) between G and G, is
defined as m(Gy, G2)/n. For a graph G and a family
of graphs H, dist(G, H) = mingr ey dist(G, G'). For
a real number ¢ > 0 and two n vertex graphs G; and
Go, if dist(G1, G2) < ¢, then G and G are e-close,
otherwise e-far. For a property P, if dist(G, P) < e,
then G is e-close from P, otherwise e-far.

Definition 1 (Tester) For a property P, a tester
is an algorithm that, given query access to a graph
G, accepts every graph in P with a probability at
least 2/3, and rejects every graph that are e-far from
the property with a probability at least 2/3. If a
tester runs in constant time, P is testable.

Definition 2 (Hyperfinite) For real numbers
s,e > 0, an n vertex graph G is called (s, €)-
hyperfinite if it can remove at most en edges to
obtain a graph whose connected compornents have
size at most s. For a function p : Rt — R, G is
p-hyperfinite if it is (p(€),€)-hyperfinite for every
e > 0. A family G of graphs is p-hyperfinite if
every G € G is p-hyperfinite. If there exists such a
function p, G is called hyperfinite.

3 Hirearchical models

Dorogovtsev[3], Barabdasi[2], and Ravasz[7] models
are well-known hierarchical models of complex net-
works. The generating algorithms are shown as fol-
lows. From the restriction of the space, we omit an
explanation of Barabasi’s model, which is close to
Ravasz’s model.

Algorithm 1 Dorogovtsev model (Fig.1)

Step 1 : Put two vertices, and connect them.

Step 2 : Add one vertex for every edge and connect
it to the end vertices of the edge.

Step 3 : Repeat Step 2.
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T=3

Figure 1: Dorogovtsev model

Algorithm 2 Ravasz model (Fig. 2)

Step 1 : Put a vertex, and let it be a root vertex.

Step 2 : Put « copies of the root, and let them be
verge. Let B be a set of verges. Connect verges
to the root.

Step 3 : Put « copies of the present graph, add the
copied of verges to B, and remove the verges of
the original graph from B. Connect every vertices
in B to the root.

Step 4 : Repeat step 3.

Figure 2: Ravasz model(a = 3)

4 Results

We prove the following theorem.

Theorem 1 For a real number e > 0, there exists a
constant number s = s(e) such that every graph gen-
erated by Dorogovrsev, Barabdsi, or Ravasz models
is (s, €)-hyperfinite. |

By considering the results on scale-freeness on [5]
with this theorem, we get the following corollary.

Corollary 1 FEvery property is constant-time
testable on Dorogovtsev, barabdsi, and Ravasz
models. O

5 Conclusion and future work

We proved that three hierarchical models are hy-
perfinite, similarly to HSF. However, we expect
that they are not in HSF. Therefore, in the fu-
ture work, we should define new graph class which
contains these hierarchical models.
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An Improved Searching Algorithm on a Line by Four Truthful

Robots and Two

Michael Hoffmann® Malte Milatz®

We study the following one-dimensional online
search problem. A collection of n robots starts at
the origin of the real line, seeking to find a trea-
sure that is hidden at an unknown location g € R.
The robots can move independently at unit speed
and are capable to detect (and report) the treasure
whenever they are at the same position g. The goal
is to design an algorithm that allows to locate the
treasure quickly, regardless of where it is located.

The problem here comes with an additional twist,
as introduced by Czyzowicz et al. [1]. Among the n
robots there are f that are Byzantine, which may
provide false reports. That is, they may report a
treasure at a position where it is not, and they may
be silent at a position where the treasure is. A robot
that is not Byzantine is referred to as truthful.

As usual in an online setting, we measure the
performance of a strategy by its worst case com-
petitive ratio, that is, in relation to an optimal of-
fline algorithm that knows the target position ¢ in
advance. In this problem, the optimal offline algo-
rithm is obvious: Directly move all robots from the
origin to the goal location g. This takes |g| time
units. Hence, an algorithm that uses ¢ time units
to find the treasure at position ¢ is said to have
competitive ratio t/|g|.

Among others, the case (n, f) = (6,2) was stud-
ied by Czyzowicz et al. [1]. They claimed an al-
gorithm with competitive ratio 4 and gave a lower
bound of 3. We improve the upper bound.

Theorem 1. There is an algorithm to find a trea-
sure on a line with six robots, two of which are
Byzantine with competitive ratio at most v/13 <
3.61.

In this abstract, we only give an outline of the
algorithm, and the analysis will be omitted.

*The work was done at 15th Gremo’s Workshop on Open
Problems, Pochtenalp, Switzerland. The authors thank the
participants for an inspiring atmosphere. The work by M.H.
was supported by the Swiss National Science Foundation
within the collaborative DACH project Arrangements and
Drawings as SNSF Project 200021E-171681. The work by
Y.O. was partially supported by JSPS KAKENHI 15K00009
and JSPS CREST JPMJCR1402.

TETH Zurich, Switzerland.

¥The University of Electro-Communications, Japan and
RIKEN Center for Advanced Intelligence Project, Japan.

Byzantine Robots*

Yoshio Okamoto? Manuel Wettstein'

The algorithm consists of up to five phases. In
the first phase, the robots are split into two groups
of size three arbitrarily. One group moves left and
the other group moves right. The first phase ends
as soon as a robot reports the treasure. Let k de-
note the time at which this report occurs, which is
the same as the distance of both groups from the
origin at the end of Phase 1. Suppose without loss
of generality that a report at time k comes from
the group of robots in the positive halfline. We
distinguish two cases.

Case 1: two or more robots report the treasure
at position k. Then, we let the two groups of robots
move to exchange their position. At time 3k, all
robots have visited the location k£ and so we know
by majority vote if this is the treasure location.
If so, we are done. If not, then we know the two
Byzantine robots and discard them from considera-
tion. We continue by moving the group at position
k to the right and the group at position —k to the
left. As soon as one robot reports the treasure, we
are done.

Case 2: exactly one robot reports the treasure
at position k. Then, Phase 2 of the algorithm
begins. We discard the robot that issued the re-
port from consideration so that only two robots
remain in the group at position k. At the begin-
ning of Phase 2, one of the remaining robots from
each group switches back and reverses direction.
We let the robots move in this way for some time
a € [0,k], where o = (v/13 — 3)k/2 < 0.303k is
a good choice for this parameter. In other words,
during Phase 2 there are four groups of robots mov-
ing together: one robot in [k, 2k] moving right, one
robot in [0, k] moving left (called the green robot),
one robot in [—k, 0] moving right (the blue robot),
and two robots in [—2k, k] moving left.

At time k + «, the second phase ends. At the be-
ginning of the third phase, one robot (the red robot)
from the leftmost group of two robots (at position
—k — «) switches back and reverses direction. The
third phase ends when the blue robot reaches posi-
tion k at time 3k. We distinguish three cases.

Case 2.1: At some point during Phase 2 or
Phase 3 another robot reports the treasure. If it is
one of the three colored robots (red, blue, or green),
then we can immediately conclude that it is Byzan-
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tine. As we have at most two Byzantine robots, we
conclude that both reports are wrong. We sim-
ply continue to sweep the line with the two black
robots in extreme position and will eventually find
the treasure at a position g in optimal time |g|.

It remains to consider the case that one of the un-
colored (black) robots reports the treasure at a po-
sition k¥’ € (k,3k]. We discard the reporting robot
from consideration so that only four robots remain.
We let all remaining robots run their course and
continue in whatever direction they are heading.

At time 3k the blue robot reaches k. If it confirms
the treasure at k, then—one way or another—two
robots lied at k. Therefore, the treasure is at either
k or k' and we know where as soon as the red robot
reaches k at time 3k + 2a.

Otherwise, the blue robot denies a treasure at k
and we conclude that the initial report at k£ was
wrong. We send the red robot to &’ and let the
other robots continue in their current direction. We
consider three subcases depending on the position
of k'. Note that at time 3k, the red robot is at
position k — 2a > 0.

Case 2.1.1: -k —a < k' < —k. Then, the
red robot has already seen k' and remained silent.
Hence, when the green robot reaches k/ at time
k' 4+ 2k we know if the treasure is there. If so, we
are done. Otherwise, we found the two Byzantine
robots and either the right black robot finds the
treasure in optimal time, or the green robot finds
it at g < —k.

Case 2.1.2: k' < —k — a. Then the red robot
reaches k' at time 4k + |k’| — 2. In addition to the
reporting black robot, both the green and the red
robot have visited k' at this point. Thus we know
whether or not the treasure is there by a majority
vote. If the treasure is at &', then we found it at
time at most v/13k. Otherwise, we found the two
Byzantine robots and either the right black robot
finds the treasure in optimal time, or the green
robot finds it at a position g < k'.

Case 2.1.3: k < k’. Then, the red robot reaches
k' at time v/13%’. At this point, three robots (black,
blue, and red) have seen k&’ and so we know whether
or not the treasure is there by a majority vote.
Therefore, if the treasure is at k', then we are done.
Otherwise, we found the two Byzantine robots and
either the left black robot finds the treasure in op-
timal time, or the red robot finds it at g > k.

This completes the analysis of Case 2.1. Hence in
the following we may assume that no robot reports
the treasure during Phases 2 and 3. We continue
our analysis at the end of Phase 3.

Case 2.2: the blue robot reports the treasure
at position k, when reaching it at time 3k at the
end of Phase 3. We discard the blue robot from

consideration and wait for the red robot to arrive
at k. Both extreme black robots continue in their
current direction. The red robot reaches k at time
V/13k. If it confirms the treasure at k, then we are
done. Otherwise, all remaining robots are truthful
and one of the black robots finds the treasure at a
position g, with |g| > 3k. and we know by time 2|g|
that the report is correct.

Case 2.3: the blue robot does not report the
treasure at position k at the end of Phase 3. Then,
we know that the first report was wrong and only
one Byzantine robot remains. We enter Phase 4,
where all robots continue in their current direction
except for the red robot, which switches back to the
origin. Phase 4 ends when the red robot reaches the
origin at time 4k — 2a.

If no robot reports the treasure during Phase 4,
then Phase 5 starts where the red robot remains at
the origin while the other four robots continue in
their current direction. Ultimately either the blue
or the green robot reports the treasure at a position
g, with |g| > 2(k — «). (If one of the black robots
reports it, then it is even better.) We immediately
send the red robot over to check, while letting all
other robots continue in their current direction.

It remains to consider the case that a robot re-
ports the treasure at a position g during Phase 4.
If the report comes from a black robot, then we can
simply wait until the blue or green robots reaches
g. At this point the red robot will have reached
the origin and we can argue as above for Phase 5.
Hence, suppose that the blue or green robot reports
the treasure. There are two final cases.

Case 2.3.1: the blue robot reports the treasure
during Phase 4 at a position k' € (k,2(k — «)].
Then, we immediately switch around the red robot
to head for k’. If the treasure is at &/, then we are
done. Otherwise, the remaining robots are truthful
and we eventually find the treasure with a black
robot in optimal time.

Case 2.3.2: the green robot reports the treasure
during Phase 4 at a position ¥ < —k. If ¥/ >
—k — o, we immediately know that the report at &’
is wrong and continue as before with the remaining
black robots, both of which are truthful.

Hence we may suppose that &' < —k — a. The
green robot reaches k" at time |k’|+ 2k, and the red
robot reaches k' at time at most v/13k’.
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Mind The Mind with Synchronous Clocks
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1 Introduction

The Mind is a card game developed by Wolfgang
Warsch, and published by Niirnberger-Spielkarten-
Verlag, Germany, in 2018. The game aquired a
good reputation, and it was nominated for several
honors, including Spiel des Jahres 2018.

The game set consists of one hundred cards, num-
bered from 1 to 100. The same number of cards are
dealt to each player, and each player can check her
own cards, but not the others’ cards. The players
cooperatively try to play the dealt cards in ascend-
ing order, but the twist is that the players are not
allowed to communicate with each other. The ab-
sence of communication makes the game exciting.

A usual strategy for the players is to try to syn-
chronize their mental clocks, count seconds, and
play card ¢ at time 4. If the clocks really synchro-
nize, then the players can win after 100 seconds.
However, spending 100 seconds sounds a waste of
time, for example, if there are only four players,
and only one card is dealt to each player.

Therefore, as a secondary goal (that is not spec-
ified by the game), the players want to reduce the
time spent in the game. On the other hand, they
should know a risk of failure by reduction; there
should be a trade-off between the success probabil-
ity and the length of a time interval.

The goal of this study is to uncover this trade-off
by mathematically modeling the situation above.
As a result, when only one card is dealt to each
player, we characterize optimal strategies for the
players, and derive a recursive formula to compute
the maximum success probability.

Due to space constraints, proofs are suppressed.
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2 Set-up

The game is parametrized by four positive integers
N,K,M and T. We assume MK < N.

In the game, we use N cards numbered from
1 to N. A card with number ¢ € {1,2,...,N}
will simply be called a card c. There are K play-
ers, and a player is identified with a number from
{1,2,...,K}. To each player, M cards are dealt,
and the players see their own cards. No player sees
the others’ cards, nor the cards that are not dealt.
Players are not allowed to establish any communi-
cation with other players.

The players share a synchronous clock. The time
is counted discretely from 1,2,..., up to 7.

At time ¢t € {1,2,...,T}, each player makes a
decision: whether she plays one of her cards or not.
The players can see the played cards of other play-
ers. After the decision, time is incremented by one,
and the game proceeds.

The players lose if one of the following three con-
ditions is satisfied.

1. Two or more cards are played at the same time.

2. The played card has a larger number than a

card of a player that was not yet played.!

. After time T, there is still a player who owns
a card at hand.

If none of the conditions is satisfied at any time,
then the players win.

For the sake of theoretical analysis, we assume
that cards are dealt uniformly at random among the
players. We concentrate on the case where M = 1.

The goal of this work is to establish the players’
strategies that maximize the winning probability
for any given N, K, and T. Such strategies are
called optimal.

3 Optimal Strategies

A strategy of a player may depend on the game
situation. At time ¢ = 1, each player ¢ decides

IThis already implies that each player should play her
cards in ascending order.
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whether she plays a card or not, and if she plays a
card, she decides which card she plays. This means
that player ¢ has a set S(i) C {1,2,..., N} of cards
such that if she has a card in S§(7), then she plays
that card at time ¢t = 1; otherwise she does not play
a card at time ¢t = 1. Thus, the players’ strategy at
time ¢t = 1 can be identified with an ordered family
of sets (S(i) | i € {1,2,...,K}).

A strategy S(i) of player i is a prefiz strategy if
there exists N (i) such that S(i) = {1,2,...,N(9)}.

Lemma 1. In every optimal strategy of the players,
each player takes a prefir strategy.

Thanks to Lemma 1, in an optimal strategy
(8(7)), we denote S(i) = {1,2,...,N(i)} for some
N(i)e{1,2,...,N}.

The players’ strategy (S(i)) is called uniform if
there exists a set S C {1,2,..., N} of cards such
that S(i) = S for all players i.

Lemma 2. FEvery optimal strategy is a uniform
strategy.

Following Lemmas 1 and 2, we may restrict to
the following uniform prefiz strategy.

Uniform prefix strategy: Fix a num-
ber N’. Each player i plays her card if
and only if she owns a card with num-
ber smaller than or equal to N’. In other
words, S(7) = {1,2,..., N’} for all i.
Here, N’ depends on N, K, and T, but is indepen-
dent of player 1.

Theorem 1. When M = 1, every optimal strategy
18 a uniform prefix strategy.

4 Recursion

From Theorem 1, we are able to obtain a recursive
formula to compute the winning probability in The
Mind. We denote by p(N, K,T) the winning prob-
ability when the players follow optimal strategies.

For base cases (or easy cases), we have the fol-
lowing:

1fK_1andT>1)
fK=1 T <

(N, K, T) = i and 0),
if N = KandT<N)
if N=K and T > N).

_ o O O = O

(i
(
(i
(i
(
(

For a general case where N > K, K > 2, and
T > 1, we obtain the following recurrence:

p(NvaT) :H}%X{PP(N_N/7K7T_1)
+Q -p(N—-N'" K-

1,T-1)},

T
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Figure 1: The maximum winning probability when
N = 100. The horizontal axis represents K.
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Figure 2: The maximum winning probability when
N = 100. The horizontal axis represents 7.

where the maximum is taken over all N’ €
{1,2,...,N — K + 1}, P is the probability that
no player owns card in {1,2,..., N’} and @ is the
probability that a single player owns her card in
{1,2,..., N’} while the other players own cards in
(N'+1,N'+2,... N}

The probabilities P and @ can be calculated ex-
plicitly:

(N — NN - K)!

P="NMnoN K
_ KN'(N = N)I(N - K)!
= NNV KT

5 Final Remarks

Figures 1 and 2 show the result of calculations
based on the recursion above. We were not able to
derive an explicit formula for the probability. This
remains an open question.

This work focused on the case where M = 1. The
case where M > 2 remains unsolved.

Acknowledgements This work was partially
supported by JSPS KAKENHI 15H05711.
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1 Introduction

A rhombus tiling is a set of rhombus tiles which
covers a domain D without overlaps nor gaps. Let
g, U1, ..., Usn_1 be pairwise non-collinear unit vec-
tors of a 2 dimensional plane. Then, we have (Z)
kinds of rhombus tiles defined as R;; := {a;u; +
a;i; | 0 < a;,a; < 1}, In this paper, we fo-
cus on a zonotopal domain D which is defined as
D :={>"a;ii| 0 < a; <d;}, where d;’s are some
fixed constant integers. For ease of discussion, we
assume dy = dy = -+ = d, = d for some integer
d (We can easily extend our discussion to general
d;’s). In a rhombus tiling, rhombus tiles are placed
in D so that (1) all points in D are covered, and
(2) any two different tiles have no intersection (i.e.,
they are nonadjacent), or they share a vertex or an
edge of their rhombuses (i.e., they are adjacent).

Figure 1 (a) illustrates a rhombus tiling for n = 3
and d = 2. For understanding rhombus tilings, de
Bruijn introduced ribbons of rhombus tiles (now,
called de Bruijn lines) [2]). The rhombus tiles de-
noted in bold lines in Figure 1 (a) is an example of
a de Bruijn line, which is obtained by concatenat-
ing adjacent rhombus tiles that have edges parallel
to #y. By replacing de Bruijn lines with pseudo-
lines, rhombus tilings can be represented by the
arrangements of pseudolines (see e.g., [1, 3]). Fig-
ure 1 (b) illustrates an arrangement of pseudolines
corresponding to the rhombus tiling in Figure 1 (a).

(a) (b)

Figure 1: A rhombus tiling for n = 3 and d = 2,
and its corresponding arrangement of pseudolines.
A ribbon and its corresponding pseudoline are given
in bold.

Japan. info@tokolo.com

@ @ ﬁQ ﬁl
\1» ﬁO
(a) (b)

Figure 2: Two rhombus tilings for n = 3 and d = 1.

Figure 3: 3-dimensional cube with 3-dimensional
unit vectors ¥y, ¥ and ¥s.

The bold pseudolines corresponds to the de Bruijn
line in bold in Figure 1 (a).

In this paper, we propose another way for rep-
resenting rhombus tilings. Our idea is to in-
troduce a set of (2-dimensional) faces in an n-
dimensional hypercube, and to project it into a
2-dimensional plane. We will explain the relation
between the faces in n-dimensional hypercube and
their projection, and then give the condition on the
faces so that the projection makes a valid rhom-
bus tiling. Our method also extends to the tilings
of 3-dimensional rhombohedra (or rhombotopes in
higher dimensions).

2 Casen=3

First, to illustrate our idea, we start from the case
n = 3 with d = 1. We have two rhombus tilings
for this case, as illustrated in Figure 2. The tiling
in Figure 2 (a) consists of the following three faces:
(0,1],0,10,1]), (1,[0,1],10,1]) and ([0,1],[0,1],1),
where a domain ([ag0,a0,1], [a1,0,a1,1], [a2,0,a2,1])
represents {Z?:o a;itt; | aio < a; < a;1} and
[a;,a;] is abbreviated as a;. Similarly, the tiling
in Figure 2 (b) consists of the following three faces:
([o,1],1,]0,1]), (0,[0,1],]0,1]) and ([0, 1],[0,1],0).
Now, tiling in Figure 2 can be observed as the
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([0,1],[1,2],1)
([0, 1], 1, 1)
* ([0,1],1,]0,1])

\
\

Figure 4: Four 3-dimensional faces sharing a line
segment ([0,1],1,1).

isometric projection of a subset of faces of 3-
dimensional cube illustrated in Figure 3. The edges
are in the directions of the (3-dimensional) unit vec-
tors 7o = (1,0,0), 71 = (0,1,0) and @ = (0,0, 1).
With these unit vectors, face ([0,1],0,[0,1]) can
be interpreted as the top face of the cube. From
this view point, the faces in Figure 2(a) represent
the front, right, and top faces of the cube, respec-
tively. Similarly, the faces in Figure 2(b) represent
the back, left and bottom faces of the cube, respec-
tively.

For general d, we consider d x d x d lattice of
cubes. Namely, we have a cube domain of edge
length d with 3-dimensional unit vectors oy, 73
and ¥5. A (2-dimensional) face in this cube lattice
is represented as a domain ([ag,0,a0,1],[a1,0,@1,1],
[a2,0,a2,1]), where a; ;’s are integers, exactly two
i € {0,1,2} satisfies a;1 = a;0 + 1, and another
i1 satisfies a;1 = a;0. The unit vectors wp, ¥
and ¥ are projected to the 2-dimensional unit vec-
tors g, w1 and wy. By this projection, faces in
3-dimensional space is projected to rhombuses in
2-dimensional space.

Note that some faces and edges in the cube do
not appear in the rhombus tilings. In other words,
by selecting a set of faces in the cube lattice, their
projection makes a valid rhombus tiling. Our goal
is to characterize such set of faces F'.

The rhombus tiles a plane if and only if (1) the in-
ternal edge is shared by two tiles and the boundary
edge is owned by a tile, and (2) the tiles do not in-
tersect. Condition (1) can be described in terms of
the cube lattice as follows. Each line segment in the
CyChC domains ([0» d]) 0, 0)7 <d7 [07 d]v 0)7 (d7 d7 [07 d])v
([0,d],d,d), (0,[0,d],d) and (0,0, [0,d]), called the
boundary line segments, (projected to the boundary
of the 2D domain), is adjacent to exactly one face
in F'. Every other line segment is adjacent to zero
or two faces in F.

For condition (2), we need a careful observation
on two adjacent faces. Figure 4 illustrates the pro-
jected rhombus of four 3-dimensional faces shar-
ing a line segment ([0, 1],1,1), which is parallel to
Up. From the line segment, face ([0, 1],[1,2],1) is in
the direction of ¥». Similarly, faces ([0, 1],1,[1,2]),
([0,1],[0,1],1) and ([0,1],1,[0,1]) are in the direc-
tions of ¥3, —tp, —u3, respectively. If two faces in
projection are on the same side from the line seg-

ment, those two have an overlap. Thus, to achieve
a rhombus tiling, we need to select two faces so that
one is above the line segment and the other is below
the line segment.

3 General n

In general, we make a projection from n-
dimensional unit vectors ¥y = (1,0,0,...,0), ¥) =
(0,1,0,...,0), ..., and ¥,—1 = (0,0,0,...,1) to
2-dimensional unit vectors #; = (cos -,sin )
(1=0,1,...,n—1). We select a set F of faces in an
n-dimensional hypercube of edge length d. The n-
dimensional line segments cyclically connecting 2n
vertices (0,0,...,0), (d,0,...,0), ..., (d,d,...,d),
(0,d,...,d), ..., and (0,0,...,0,d) are boundary
line segments. Each of the line segments has an ad-
jacent face in F'. Every other line segment has zero
or two adjacent faces in F', where, in case two faces
are adjacent, one is above and the other is below
the line segment.

We can further rewrite this “above or below” dis-
cussion in terms of consistent orientation. Consider
two faces sharing an edge of direction v; extending
to 0;U; and 040y, directions (0; = £1, o}, = £1), re-
spectively. They have consistent normals ¥; X ;7
and (—0;) X o0k, respectively. The orientation
needs to be consistent also in the projection, i.e.,
ojdet [ﬁz ﬁj] and oy, det [—’EL} ﬁk] have the same
sign. This representation makes our model further
ready for rhombohedral tiling and the tiling in a
higher dimension.

We have enumerated the sets of faces that satisfy
the constraints as above. That is to say, the con-
straints on the faces of n-dimensional hypercube for
a rhombus tiling. The experimental results match
the known results [4] on d = 1 when n is up to 8,
and on d = 2 when n is up to 6.
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Representations of Generalized Symmetric Groups and
Sums of Welter's Game

Yuki Irie*

We present a relation between irreducible representa-
tions of generalized symmetric groups and sums of Wel-
ter’s game. Mikio Sato [5,6] conjectured that Welter’s
game is related to representations of groups. In support
of this conjecture, he pointed out that the Sprague-
Grundy function of this game can be expressed in a
form similar to the hook-length formula. A relation
between them was established in [3]. In this talk, we
generalize this result to generalized symmetric groups.

1. Welter’'s game

Welter’s game is a two-player game played with a Young
diagram. A Young diagram is a collection of cells and
represents a partition. For example, the Young diagram
in Figure 1 (a) represents the partition (4,3,2). We
identify a partition with its Young diagram.

To define Welter’s game, we introduce some notation.
For a cell ¢ in a Young diagram, the hook of ¢ consists
of the cells to the right of and below ¢, and including
c. Figure 1 (b) shows the hook of the cell (1,2). The
number of cells in the hook of ¢ is called the hook-length
of ¢. Figure 1 (¢) shows the hook-lengths of (4, 3,2).

| o | 6[5[3[1]
413]1
211

€) (b) ©

Figure 1: Young diagram (4,3,2)

We now define Welter’s game. In this game, two
players alternately remove a hook. Figure 2 shows the
result of removing the hook of (1,2). The player who
removes the hook last wins.

ol ] |
—fo—H

Figure 2: Removal of the hook of (1,2)

Impartial games such as Welter’s game can be solved
using Sprague-Grundy functions (see, for example,
[1,2]). Sato [5] obtained the following formula for

*Research Alliance Center for Mathematical Sciences,
Tohoku University, yirie@tohoku.ac.jp

the Sprague-Grundy function of Welter’'s game. For
a Young diagram Y, let H(Y) be the multiset of hook-
lengths of Y. If we think of Y as a position in Welter’s
game, then the Sprague-Grundy value of Y can be ex-
pressed as

sgw(Y) = C‘B 2

heH(Y)

20rd2 (h)+ 1 1

i

where @9 is addition without carry in base 2 and
ords(h) is the 2-adic order of h. For example, 123 = 2
and ords(12) = 2.

2. Representations

Let G be a finite group and V a finite dimensional vec-
tor space over C. A group homomorphism R from G
to the general linear group GL(V) is called a represen-
tation of G. The dimension of V' is called the degree of
R. For a subgroup H of G, the restriction of R to H
is the representation R|y : H — GL(V). It is known
that every representation of G' can be decomposed to a
direct sum of irreducible representations.

Irreducible representations of symmetric group
Sym(n) are in one-to-one correspondence with Young
diagrams with n cells (see, for example, [4]). For a
Young diagram Y, let RY denote the irreducible repre-
sentation corresponding to Y. Then

n!

degRY = —— and
HheH(Y) h

RY|Sym(n71) = @ RY_a
yv—

where the direct sum runs over all Young diagrams Y~
obtained from Y by removing a hook of length 1. For
example,

Ty

T 6-5-4-32.2
1 11 [ ] |

R fsyme =R @R @R .

One of the central problems of representation theory
is the McKay conjecture ! about representations with

deg R— 168  and

'McKay conjectured that the number of irreducible representa-
tions of G with degree prime to p is equal to that of Ng(P),

75 where P is a Sylow p-subgroup of G and Ng(P) is the nor-

malizer of P in G.



degree prime to p. Such representations play an impor-
tant role to connect representations and games. Let p
be a prime. Define

wp(y) _ @p pordp(h)-i-l . 1,
heH(Y)

where @, is addition without carry in base p and
ord,(h) is the p-adic order of h. Note that ¥*(Y) =

sgyw(Y).

Theorem 2.1 ([3]). The restriction of RY to
Sym(yP(Y)) has an irreducible component with degree
prime to p.

Example 2.2. Let p = 2 and Y = (4,3,2). Then
Y2(Y) = 7, so Theorem 2.1 asserts that RY|Sym(7) has
an irreducible component with odd degree. Indeed,
R(G:3.1) ig its irreducible component and deg R®31) =
71/(5-4-3-22%) =21.

3. Games and Representations

Let WP be a p-saturated (see Appendix A) Welter’s
game. In fact, we can prove that the Sprague-Grundy
function sgyy, of WP is equal to ¢ using Theorem 2.1.
Therefore, this theorem can be reformulated as follows.

Theorem 3.1 ([3]). The restriction of RY to
Sym(sgywe(Y)) has an irreducible component with de-
gree prime to p.

We can generalize Theorem 3.1 to generalized sym-
metric groups (Z/mZ)!Sym(n). Irreducible representa-
tions of (Z/mZ) ¢ Sym(n) are in one-to-one correspon-
dence with m-tuples of Young diagrams with n cells in
total. For an m-tuple of Young diagrams (Y7,...,Yy,),
let RY1+Ym the corresponding irreducible representa-
tion of (Z/mZ) ! Sym(n). The degree and restrictions
of RY1»»¥m can be computed in a similar way to RY .

Theorem 3.2. The restriction of RY1Ym to (Z/mZ)
Sym(sgwe (Y1) ®p - -+ ®p sgywr(Ym)) has an irreducible
component with degree prime to p.

Example 3.3. Let p =2, m =2, Y] = (4,4,2), and
Yy = (2,1). Then deg R¥Y2 = 13!/(6-5%-4-3%2.23) =
144144 and sgyy2 (Yl) @2 Sgy2 (Yg) =6@y1 = 7. The-
orem 3.2 asserts that Ryl’y2|sym(7) has an irreducible
component with odd degree. Indeed, RZ21.(2) ig its ir-
reducible component and deg R(?>1):(2) = 71/(4.3.22) =
105.

A. p-saturations

A.1. Subtraction games

Let P € N*¥ and € < N*\ {(0,...,0) }, where N is the
set of nonnegative integers. We consider the following
game. Before the game, we pick a start position Xg € P.
The two players alternately subtract some C' € € from
the current position. The player who subtracts last
wins. Let I'(P, €) denote this game.

Example A.1. Let P = N¥ and € = {C e NF :
wt(C') = 1}, where wt(C) is the Hamming weight of C.
Then I'(P, €) is Nim. Welter’s game can be described
as a subtraction game. Let P = {X e NF:x; # 2},
where X = (z1,...,2,). Then I'(P, C) is another form
of Welter’s game. The correspondence between the
two forms of Welter’s game is given by ® : X —
(.’Eg(l),.%'o-(Q), ce ,:L'J(k)) - (k - 1, k — 2, ce ,0), where
o € Sym(k) with To(1) > To2) > 0 > To(k)- For
example, ®((4,6,2)) = (4,3,2).

A.2. p-saturations

Using p-saturations, we can construct games whose
Sprague-Grundy function can be expressed by arith-
metic modulo p.

Let €7 be the set of C e N¥\ {(0,...,0)} satisfying

ord, (Z ci> = min {ordy(¢;) : 1 <, i<k}.

Then I'(P,C) said to be p-saturated if its Sprague-
Grundy function is equal to that of T'(P, €7).

Example A.2 ([3]). Let NP be a p-saturated Nim.
Then sgyy (X) = 21 ®p - - - Bp Tk
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1 Introduction

The flat foldability problem, which asks whether or
not a given piece of paper with creases each of which
has a mountain-valley assignment is flat foldable, is a
typical problem of origami mathematics. This prob-
lem is know to be in NP-complete [2]. However, in the
case that the paper is limited to a rectangular strip
and the creases are perpendicular to the long axis of
the strip, which is called one-dimensional flat fold-
ing problem (with mountain-valley-assigned creases),
a linear time algorithm is known [1][3]. We con-
sider two problems: One is that the angle formed
by creases is equal to an arbitrary angle, which is
not limited to 7/2, i.e., all creases are parallel; and
the other is that only two types of creases that are
orthogonal each other are allowed and creases are ar-
ranged in a zigzag pattern. We show that the former
can be solved in linear time, and the latter is always
foldable.

2 Preliminaries

The piece of paper is restricted to a long rectangular
strip. A crease is a line segment on a piece of paper.

An angle formed by a crease is the angle at which
the crease rotates in the positive direction from the x-
axis, where the long axis of the strip is the x-axis. A
crease is folded into either a mountain fold (M) form-
ing a protruding ridge, or a valley fold (V') forming
an indented trough. A mountain crease is illustrated

by a one-dot-chain line, and a valley crease is illus-
trated by a broken line. We must fold every crease
according to the given mountain/valley assignment
in 180°. The paper should not be stretched, be torn,
nor penetrate itself. When we fold a piece of paper,
it continuously changes its form from the initial flat
form to the final folded state. The paper can not self-
intersect, but can overlap. A folding such that every
crease is folded according to the given direction of
mountain/valley assignment and the final state be-
comes flat is called a flat folding. If a piece of paper
with mountain-valley-assigned creases has a flat fold-
ing, it is said flat foldable.

3 Definitions of the problems and
our results

3.1 Parallel oblique creases

In this section we consider a problem in which all
creases are parallel, but the angle may not be /2,
i.e., this problem is a generalization of the one-
dimensional flat folding problem.

n + 2 real values cg, c1, ..., cpt1 (Where ¢ < ¢1 <

- < c¢py1) and a label function L: {1,...,n} —
{M,V'} are given. The piece of paper is a parallelo-
gram strip whose vertex coordinates on the plane are
(c0,0), (cn+1,0), (cny1 +cot @, 1), and (co + cot 6, 1),
and the width (height) is 1. If L(i) = M, then ¢; is a
mountain crease and if L(i) = V, then ¢; is a valley
crease.
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It has n creases ¢; (i € {1,...,n}) and the angle
formed by a crease and the long edge of the strip is
0, where 0 < 0 < /2 i.e., the short edges of the strip
and all of the creases are parallel (see Fig. 1).

An instance is expressed by I = (cq, . .., cnt1; L, 0).
This problem is formulated as follows.

Problem: Strip flat folding problem with parallel
oblique mountain-valley-assigned creases

Input: I = (co,...,cnt1; L, 0)

Request: Determine whether or not [ is flat fold-
able.

(co+cot0, 1) (c;+cot0, 1) (encrreotO, 1)

I

X
(co,0) €, 0)

(Cn+ 1 0)

Figure 1: An instance of the strip flat folding prob-
lem with parallel oblique mountain-valley-assigned
creases

For this problem, we give a linear-time algorithm.

3.2 Zigzag creases

In this section, we consider a problem in which only
two angles of creases orthogonal each other are al-
lowed and all creases form a zigzag pattern. In this
problem we allow a label of a crease “unfold” (V)
besides M and V. If the label of a crease is N, the
crease is not folded (i.e., it is not a “crease,” but a
mere line segment).

An integer n which is the number of creases and a
label function L: {1,...,n} — {M,V, N} are given.
The shape of the strip is a parallelogram if n is odd
and an isosceles trapezoid if n is even. For both
shapes, the hight is one and the inner angles of the
four vertices are 6 or m — 6, where 0 < 6 < 7/2 is
a given real number. The angle that a crease makes
with the long edge (base) of the strip is 6 or 6 + 7/2
and the creases form a zigzag pattern shown as Fig.
2.

An instance is expressed by [
problem can be formulated as follows.

(n,L,0). This

Problem: Strip flat folding problem with orthogonal
zig-zag mountain-valley-assigned creases

Input: I = (n,L,0)

Request: Determine whether or not [ is flat fold-
able.

Figure 2: An instance of the strip flat folding
problem with orthogonal zig-zag mountain-valley-
assigned creases

For this problem we show that every instance is
flat foldable.

4 Summary and future work

We present a linear time algorithm for the strip
flat folding problem with parallel oblique mountain-
valley-assigned creases.

Furthermore, we prove that the strip flat fold-
ing problem with orthogonal zig-zag mountain-valley-
assigned creases is always flat foldable.

For future work, we will try to relax the restric-
tions. The general strip flat folding problem, i.e. ar-
bitrary creases without crossing are given on a strip,
has been shown to be weakly NP-hard if the pieces
are rigid [4]. However, if the rigidity constraint does
not exist, a polynomial-time algorithm may exist.
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Abstract. It is known that we can continuously flatten the surface of
any given regular polyhedron onto any of its faces by moving creases to
change the shapes of some faces successively. This result was extended
by the authors to regular polytopes such as simplexes, hypercubes, and
cross-polytopes. There are three more types of regular polytopes, the 24-
cell, the 120-cell, and the 600-cell. In this talk we show that for a regular
24-cell P the 2-dimensional skeleton of P can be continuously flattened
onto any of its faces F' so that 9/16 of the edges and all six faces parallel
to F' are rigid during the motion.

1 Introduction

Can we flatten a polyhedron of flexible material such as a piece of paper without
cutting and stretching? (See [1]). We proved in [4] that there are infinitely many
ways to do so for a convex polyhedron. In this paper we work on a related topic
for higher dimensional polytopes.

Definition 1. Let P be an n-dimensional reqular polytope. Let S be the set of
the 2-dimensional faces in P. We call S the 2-dimensional skeleton (2-skeleton
for short) of P.

The authors showed in [2,3] that for any dimension n the 2-skeleton S of
each of an n-hypercube, n-simplex, and n-cross-polytope can be continuously
flattened onto any of its 2-dimensional face F' so that a large number of the
edges are rigid and that in the case of hypercube all the square faces parallel to
F' are rigid during the motion. For the 4-dimensional case, there are three more
types of regular polytopes, the 24-cell, the 120-cell, and the 600-cell. In this talk
we work on the 24-cell.

A regular 24-cell is composed of 24 regular octahedra. Let () be the cubocta-
hedron in the 4-dimensional Euclidean space with z-, y-, z-, and w-axes, whose
12 vertices are (+1,+1,0,0), (£1,0,+1,0), and (0,+1,+1,0) (see Fig. 1 (a)).
Let W and W~ be regular octahedra with vertices (1,0, 0, ¢€), (0, £1,0,¢), and
(0,0,£1,€) where e = £1, respectively (Fig. 1 (b)). The surface of the convex
hull of the union QUW T UW ™ is a regular 24-cell and denoted by P. Note that
lengths of its edges are all equal to v/2.
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(a) (b)

Fig. 1. A regular 24-cell: (a) A cuboctahedron in zyz-space with w = 0; (b) a regular
octahedron congruent to the one in the hyperspace with w =1 or w = —1.

2 Theorem

A regular 24-cell P is composed of 24 vertices, 96 edges, and 96 faces.

Theorem 1. Let P be a regular 24-cell. There is a continuous folding process
from the 2-dimensional skeleton of P onto the surface of an octahedron congruent
to a facet of P so that 72 edges are rigid and each of the other 24 edges is
deformed into two connected edges folded at its midpoint, and that 24 faces are
rigid during the motion.

We also show that the 2-skeleton of a regular 24-cell can be continuously
folded onto any of its faces F' so that 54 edges and all six faces parallel to F' are
rigid during the motion.
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1 Introduction

In computational origami, one of the most popular
problems is the flat folding, which asks whether a
given crease pattern can be folded in flat or not.
When a given crease pattern has only one vertex
at the center, the flat folding problem asks the lo-
cal flat foldability. For this simple and basic prob-
lem, two conditions about angles and assignment of
mountain/valley foldings are well known:
[Kawasaki=Justin Theorem] For a vertex to be
flat-foldable, the alternate angles between adjacent
creases must sum up to .

[Maekawa=Justin Theorem]| For a vertex to be
flat-foldable, the difference of the numbers of its re-
lated creases assigned to be mountain and valley is
+2.

However, when a given crease pattern contains
n vertices, the global flat foldability is intractable.
Since Bern and Hayes first showed that the flat fold-
ing problem is NP-hard in general [3], this problem
has been widely investigated in many variants.

As a simpler version, map folding problem has
been studied for almost 40 years. However, even
in this restricted case, there are still many unsolved
problems [2]. In the basic map folding problem, a
map is defined by a rectangular sheet with a grid
pattern. Specifically, the sheet is partitioned into an
m X n regular square grid. Its mountain-valley as-
signment is defined as a mapping from the collection
of non-boundary grid edges to the set {M,V}, where
M and V mean mountain and valley foldings, respec-
tively.

In [2], they mainly investigate the map folding
problem on a simple folding model. In this simple
model, they show weakly NP-completeness for the
map folding problem for maps of size m xn. Recently,
some hardness results are extended and strengthened
to more general simple folding models in [1].

Figure 1: An instance of our problem.

When we turn to the general folding model, the
map folding problem asks if a feasible folded state
consistent to a given crease pattern with/without MV
assignment exists or not. This problem has the dif-
ferent aspect comparing to the simple folding model.

The MV assignment apparently has a significant
effect on the difficulty of the map folding problem.
Conversely, it is trivial to fold any ordinary square
grid without MV assignment. From this viewpoint,
two extensions are investigated. One is the extension
from square grids to square and diagonal grids, which
means, diagonal crease lines of angle 45° are allowed.
The other is assigning “not folded” besides M and
V, that is, allowing some crease lines in the grid not
folded. Both of them are natural assumptions from
the viewpoint of origami.

In this context, recently, the map folding problem
of size 1 xn is investigated by the first two authors [4].
Namely, an instance is a paper strip of size 1 xn, with
a crease pattern as a part of a square and diagonal
grid, and with no MV assignment. In this case, they
proved that every such instance can be folded in flat.
In this paper, we extend this result to a map of size
2 x n (Figure 1). The main theorem is as follows:

Theorem 1.1 Let P be a sheet of paper of size 2 Xn
with a crease pattern. Here, the crease pattern is a
subgraph of a square and diagonal grid of size 2 X n,
and MV assignment is not given. Then, any P satis-
fying local flat foldability can be folded in flat. More-
over, a corresponding folding motion can be found in
linear time.
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Connection Part Connection Part Center-lined Part No-center-line Part
P S S g

No-center-line Part Center-lined Part Connection Part Connection Part

Figure 2: A separation with respect to the horizontal
center line (Sections each with two, one, or none hor-
izontal crease belongs to a center-line part, a connec-
tion section, or a no-center-line part, respectively).

Collections Patterns Operations
Center-lined S ﬁ EH % Direct
Part % % % % Folding
Connection
mection Y TPUXES
No-center- % @
line
Combination
P YN Folding

Table 1. Patterns and way of folding.

2 Outline of the Proof

For a given P, the vertices inside of P can be classi-
fied into two groups. The first group consists of the
vertices that can have the degree at most 4 in the
crease pattern. A previous work in [4] about maps of
size 1 x n provides some available results, while it only
analyzed the properties of the degree at most 4 in the
crease pattern. Since our study is about maps of size
2 x n, the other group consisting of the vertices each
has a degree at most 8 in the crease pattern becomes
the main target through our proof.

Based on analysis on the second group, we give a
general way to fold P to a zigzag pleat. The key to
avoid self-intersection during the folding is: Always
keeping the layers already folded below the ones to
be folded along a fixed direction. In the proof, we an-
alyze a set {2 composed by n— 1 consecutive sections,
each of which is a square of size 2 x 2 (whose center
points are the vertices from the second group). P can
be flat-folded via a folding process f if (1) each ele-
ment in {2 satisfies no self-intersection happens within
itself, and (2) the sections left to it in the initial state
are folded to layers below it while the sections right
to it are folded to layers above it.

We here give a brief idea for proving claim (2).
For a vertex in the second group, there are 18 pat-
terns with respect to symmetry if it is locally flat-
foldable. These patterns and their corresponding way
of folding are summarized in Table 1. The patterns
are classified into three groups with respect to the
number of creases k on the horizontal line as Center-
lined Part (k = 2), Connection Part (k = 1), and
No-center-line Part (k = 0) in Figure 2. The way
of folding is mainly decided by this classification as
shown in Table 1. Every section is considered to
be folded with either Direct Folding (fold without
any unfold operation) or with Combination Folding
(a combination of both fold and unfold operations).
The outline of our proof is as follows: First, show
that every Center-lined Part and every No-center-
line Part can be folded into a zigzag pleat with a
corresponding folding operation respectively; Then,
prove that every possible Connection Part between a
Center-lined Part and a No-center-line Part can be
effectively folded in order to obtain a final flat-folded
state of P without self-intersection. During each step,
we specify reasonable MV assignments for each pat-
tern itself and the possible combinations involving it,
which always leads to a flat-folded state in the shape
of a zigzag pleat. Based on the MV assignment given
step by step and a combination of these folding oper-
ations, P can be folded into a zigzag flat-folded state.

Throughout these operations, we can conclude that
P can be folded flat if and only if each of the vertices
inside of P is locally flat-foldable. Therefore, we can
decide it in linear time by checking locally one by one.
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Maximum Overlaps of Folded Triangles and
Quadrilaterals

Mikio Kano* Evangelos Kranakis' Toshinori Sakai*

Jorge Urrutia®

Extended Abstract

Let AABC denote a triangle with vertices A, B and C. A non-obtuse triangle is a
triangle without an obtuse angle. For a connected plane figure F, let £ = L denote the
set of straight lines in the plane, intersecting F'. For ¢ € L, let ov(F';{¢) denote the area
of the overlap of F for the folding along ¢ (Figure 1). For a measurable subset S in the
plane, let m(S) denote the area of S.

S OV(E )

Figure 1: A folding and the overlap.

For a triangle AABC, write |BC| = a, |CA| =0, |AB| = ¢, ZCAB = o, ZABC = j3
and ZBCA = ~, where for two points X and Y, |XY| denotes the length of the line
segment XY In this presentation, we first show the following theorem [1]:

Theorem 1 For any triangle ANABC with a < b < ¢,

. ov(AABC; /) b a c?
max —————>—- =
te m(AABC) b+c a+b 2¢2+0?—a?

More specifically, the mazimum is b/(b+ c), a/(a + b) or ¢*/(2¢* + b* — a?) if the point
(a/c,b/c) belongs to the region I, II or Il in Figure 2, respectively.
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Figure 2: The regions I, I and IT. (Since a < b < ¢ by assumption and since ¢ < a + b
by the triangle inequality, we have x <y <1 < z +y, where x = a/c and y = b/c.)

As immediate corollaries, we obtain:

Corollary 1 For any triangle AABC,

ov(ANABC; ) B 1

and this bound is tight.

Corollary 2  For any non-obtuse triangle NABC,

s ov(AABC; ) 1
ter m(AABC) — {241

= 0.44249...,

and this bound is tight.

For a convex quadrilateral ), we label its vertices by A, B,C and D in this order
along the perimeter, in such a way that

/DAB+ /ABC <7 and /CDA+ /DAB <. (1)

Theorem 2 For a convexr quadrilateral Q with (1), AC > AD and AC > AB,

i V(@0 V2

= 0.40236....
e m(Q) — 6

We also show some other results for convex quadrilaterals.
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Enumerating associative magic squares
of order 7

Go Kato*! and Shin-ichi Minato'!

'Kyoto University

A magic square of order n is an n X n square grid such that the sums of
the numbers in each row, column, and diagonal are equal. An associative magic
square is a magic square such that the sum of any 2 cells at symmetric positions
with respect to the center is constant. Although it is known that there are many
associative magic squares of order 7, the exact number was not known until this
report. The total number of associative magic squares of order 7 is enormous,
and thus, it is not realistic to obtain the number by simple backtracking. As
a recent result, Artem Ripatti reported the number of semi-magic squares of
order 6 (the magic squares of 6 x 6 without diagonal sum conditions) in 2018[1].
In this research, with reference to Ripatti’s method of enumerating semi-magic
squares, we have calculated the total number of associative magic squares of
order 7. There are exactly 1,125,154,039,419,854,784 associative magic squares
of order 7, excluding symmetric patterns.

In Ripatti’s paper, he considered some equivalent classes, defined the repre-
sentative patterns and counted only representative patterns. Then, he divided
squares into two parts and enumerates each part independently. Finally, he
combined the results of each part to get the total number of semi-magic squares
of order 6. We extend Ripatti’s method for semi-magic squares to associative
magic squares and propose an algorithm to calculate the number of associative
magic squares of order 7.

Associative magic squares of order 7 can be transformed into 48 x 48 =
2304(48 row rearrangements and 48 column rearrangements) associative magic
squares by symmetrical swapping of rows and columns with respect to the cen-
ter as exemplified in Figure 1. We define a canonical associative magic square
of order 7 that represents the 2304 associative magic squares made by the trans-
formations, and count only the canonical associative magic squares.

It is an important issue how to split the square to enumerate each part in-
dependently. We can enumerate 3 center rows and 4 outer rows more indepen-
dently than many other partitions. Thus, we will consider counting associative
magic squares of order 7 by dividing up the square as shown in Figure 2.

*kato.go.46a0@st.kyoto-u.ac.jp
Tminato@i. kyoto-u.ac.jp
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Figure 2: 3 center rows and

Figure 1: one of 48 row rearrangements 4 outer rows

Let S4 be the set of elements in the center part and Sg be the set of
elements in the outer part. We count canonical associative magic squares for
each (S4,S5p). Let X;; be the i-th row, j-th column element of the square. We
define the profile of the center parts as (2?23 X1, Z?:?) Xia, Z?:s X;3) and
define the profile of the outer parts as (175 — X117 + Xo1 + X1 + X71,175 —
X2 + Xoo + Xgo + X72,175 — X153 + Xo3 + Xg3 + X73) In these definitions,
the center part and the outer part must have the same profile in order for the
combination of the center and the outer part to become an associative magic
square. Therefore, for each profile p, we can count the number of canonical
center parts N4[p] and canonical outer parts Np[p] then calculate the number
of canonical associative magic squares in one pair (Sa, Sp) as >, (Na[p]x Ng[p])

We have calculated the total number of associative magic squares of order 7
up to reflections and rotations: 1,125,154,039,419,854,784. This is the first result
to show the exact number of 7 x 7 associative magic squares. The calculation
was executed on 16 threads, and took about 2 weeks. We submitted our results
to the On-Line Encyclopedia of Integer Sequences (OEIS), and it was accepted
on December 10, 2018]2].

Walter Trump|3] estimated the number of associative magic squares of order
7 to be within the range (1.125151 4= 0.000051) x 10'® with a probability of 99
%. Our result, 1,125,154,039,419,854,784, is within the range of this estimate.
Trump also confirmed the number of 7 x 7 associative magic squares of one
(5S4, Sp) with backtracking and confirmed our total results with his own pro-
gram based on our method. Our results have been confirmed by a probabilistic
estimation, Trump’s implementation, and some properties of associative magic
squares.
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Constructive Characterization of Critical

Bidirected Graphs
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In this talk, we define a class of bidirected graphs called radials that is
a generalization of factor-critical graphs in matching theory, and provide
a constructive characterization of radials that contains Lovasz’s classical
theorem on factor-critical graphs. This is a piece from a series of works
that establish a strong component decomposition for bidirected graphs with
respect to directed trails.

Bidirected graphs are a common generalization of digraphs and signed
graphs. A bidirected graph is a graph in which a sign 4+ or — is assigned to
each end of each edge. A digraph is a special bidirected graph in which the
ends of an edge have distinct signs. A signed graph is a graph in which a
single sign is assigned to each edge, and can be considered as a bidirected
graph in which the ends of each edge have the same sign. The concept of
bidirected graphs is first proposed by Edmonds and Johnson [1] in 1970 to
provide an integer linear programming framework that integrates various
problems in matchings, coverings, and network flows.

We can naturally define a bidirected counterpart of directed paths (di-
paths) and trails (ditrails) in digraphs; however, we should note that general
bidirected graphs have the following two features that digraphs do not pos-
sess, which make the structure of bidirected graphs rich and complicated.
First, general bidirected graphs have four types of dipaths or ditrails, that
is, dipaths or ditrails that start and end with — and — or + and +, in
addition to those with + and — or — and +. Second, in bidirected graphs,
even if two vertices are connected by a ditrail, it does not necessarily follow
that these vertices are connected by a dipath. This implies that we need
distinct strong connectivity theories for bidirected graphs, that is, those
regarding dipaths and ditrails.

We define radials as follow: a bidirected graph with a vertex r is a radial
with root r if every vertex can reach r with a ditrail starting and ending
with — and +, respectively. Radials are a common generalization of the
factor-critical graphs and flowgraphs. An undirected graph is factor-critical
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if deleting any arbitrary single vertex makes a graph with perfect match-
ings. Under the correspondence between matchings in undirected graphs
and a special singed graphs, factor-critical graphs corresponds to a special
class of radials. Factor-critical graphs are a classical concept in match-
ing theory and appear in the Gallai-Edmonds structure theorem and Ed-
monds’ blossom algorithm for solving the maximum matching problem [2].
In 1972, Lovasz gave a constructive characterization of the factor-critical
graphs that uses the ear decomposition. This celebrated characterization
has shown its power in numerous works in matching theory where the
Gallai-Edmonds structure theorem or the maximum matching problems are
involved. A digraph with root r is a flowgraph with root r if every vertex
can reach r with a directed path. From the strong component decompo-
sition for digraphs and the classical characterization of strongly connected
digraphs that uses the ear decomposition, a constructive characterization
of flowgraphs is obvious.

In this study, we provide a constructive characterization of the radials.
This is a common generalization of the above mentioned Lovasz’s charac-
terization of factor-critical graphs and the characterization of flowgraphs.
We first define semiradials, a wider concept that includes radials. We then
define two classes of semiradials: absolute semiradials and linear semiradi-
als. Two special classes are also defined for the first one: strong radials and
almost strong radials. We provide constructive characterizations for each
of these four classes of radials or semiradials, and then use characterization
to obtain a constructive characterization of general radials.
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A Phase Transition Concerning the Boundedness of Orbits on a
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Abstract. We investigate the phase transition of a dynamical system generating an infinite orbit of
points. The points of the orbit are generated according to the following basic antipodal operation. Given
a positive real number a, called the expansion factor, and two points p, ¢ at Euclidean distance |pq| we
determine the unique point p’ on the straight line passing through p and ¢ which is antipodal to the
point p with respect to g and at Euclidean distance a|pg| from ¢g. The operation on points previously
defined is denoted by p =44 p’.

Let a := (ao,a1,...,an—1) be an arbitrary but fixed positive real numbers and q := (g0, q1,---,¢n-1)
n (anchor) points. An orbit consisting of an infinite sequence po, p1, ..., Pm, ... of points in the plane
is generated by using the anchor points as follows. The orbit is initiated with the point py := p and for
all integers m > 1, satisfies Pm = a,, 1mod ns@m mod n Pm+1 S0 that pmi1 := (pm)’; the resulting sequence
of points is called the (a, q)-orbit of p.

For any starting point p and any pair (a, q) we characterize the boundedness of (a, q)-orbits. Namely, it
is shown that there is a phase transition concerning the boundedness of the resulting (a, q)-orbit which
depends on whether or not the product of the expansion factors is less than one, i.e., apa - -an—1 < 1.
The “boundedness” phase transition phenomenon described above is shown to be valid for any dimen-
sion d = 1,2, 3 in the FEuclidean space.

Boundedness of Orbits from Anchor Points

We consider a new problem on the boundedness of orbits. Suppose that n points q = (qo, g1, - - -, qn—1), also
called anchors, are located in arbitrary but fixed positions in the plane. Further, assume that each point ¢; is
associated with a positive real number a; called the expansion factor (or ratio) of ¢;. Let a = (ag, a1, ...,an—1)
be the sequence of expansion factors. Let p be any point in the plane. The (a, q)-orbit with respect to the

Fig. 1. The first seven points po, p1, p2, 3, P4, Ps,Pe in a (a,q)-orbit with five anchor points qo, g1, g2, g3, qs in the
plane and respective expansion ratios ao, a1, az, as, as. The sequence of points p; continues indefinitely.

sequence q of anchors consists of an infinite sequence pg, p1,...,Pm,... of points which is generated by
using the antipodal operation (defined in the abstract above) on points qg, q1,. .., ¢,—1 S0 that point p,, 1
is antipodal to p,, with respect to the point g, mod » (see Figure 1).

Given the setting considered above we prove the following result concerning the boundedness of orbits
generated from an anchor point set.
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Theorem 1 (2D Orbits from n anchors). Consider n anchor points q = (o, q1,- - -,qn—1) in the plane
with corresponding expansion factors a = (ag, a1, ..., an_1), respectively, and a point p in the plane.

1. If agay - - an—1 > 1 and the distance of p from the point set {qo,q1,...,qn—1} s at least

1 1
Q(é max {—i—}) ,
1<i<b | ag ap - a;

where & is the diameter of the point set, then p has an unbounded (a, q)-orbit.
2. If apay - -an—1 < 1 then p has a bounded (a, q)-orbit.
3. If apay - an—1 =1 then p has a bounded (a, q)-orbit for n > 2, and an unbounded (a, q)-orbit for n = 2.

The result above generalizes easily to three-dimensional space.

Related Work on Outer Billiards

We now contrast our work with outer billiards, a dynamical system defined in the Euclidean plane which
involves a discrete sequence of moves taking place outside a given bounded convex set K. Assume the
boundary of K is a convex polygon. In addition, let ¢ be an arbitrary positive real number. To form an
outer billiard orbit, one starts with an arbitrary point p := pgy which lies outside the convex polygon K.
Draw the straight line emanating from py and intersecting K at a vertex, say po1, so that K is to the right
of this line. Let p; be the point on this line antipodal to py with respect to po1 so that |popo1| = alpoipi].
The sequence of points resulting when we iterate this operation is called forward a-orbit (see Figure 2). The

p2
ps

P12

Po1

P

Fig. 2. The first three points po, p1,p2,ps in a a-forward outer billiard (orbit) for a bounded convex polygon with
starting point po. By reversing direction ps, p2, p1, po this can also be considered as an a-backward orbit.

definition of outer billiard generalizes an analogous definition restricted to a = 1 and which can be found in
Schwartz [5]. Moser [2][p. 11] attributes the following question to Neumann [3]: Assume a = 1. “Is there an
outer billiards system with an unbounded orbit?” as an idealized version of the question about the stability
of the solar system. Neumann [3] was the first to introduce outer billiards in the late 1950s. In the 1970s,
J. Moser [1] popularized outer billiards as a toy model for celestial mechanics. Only outer orbits on Penrose
kites are known to be unbounded [4]. For a book length treatment of the topic as well as a chronological list
of most of the known work related to the question of the boundedness of the orbit when a = 1 the reader is
referred to the following book by Schwartz [5]. For general, related work on billiards the reader is referred
to the books [6, 7] by Tabachnikov.
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Let G be a graph. An additive coloring of a graph G is a labeling from the
vertex set of G to the set of integers such that for every two adjacent vertices
the sums of integers assigned to their neighbors are different.

The definition of additive chromatic number was first introduced in [4]. The
additive chromatic number of G is the least integer k such that G has an additive
coloring from the vertex set of G to {1,2,...,k}. It is conjectured in [4] that for
every graph G, the chromatic number of GG is an upper bound of the additive
chromatic number of G.

The definition of additive choice number was first introduced in [1]. A list L
of a graph GG is a mapping that assigns a finite set of integers to each vertex of
G. A list is a k-list if for each vertex is assigned at least k integers. An additive
coloring f of G such that f(v) is an element in L(v) for each vertex v is called
an additive L-coloring of G. The additive choice number is the least integer k
such that G has an additive L-coloring for any k-list L. The additive choice
number is an upper bound of the additive chromatic number for any graph G.

The definition of sigma chromatic number was first introduced in [3]. The
sigma chromatic number of G is the minimum number of colors required in an
additive coloring of G. The additive chromatic number is an upper bound of
the sigma chromatic number for any graph G.

A Halin graph is a plane graph H constructed as follows. Let T' be a tree
of order at least 4. All vertices of T" are either of degree 1 or of degree at least
3. Let C be a cycle connecting the leaves of 7" in such a way that C forms the
boundary of the unbounded face. The tree T is called the characteristic tree of
H.

Combinatorial Nullstellensatz was introduced in [2] and became a powerful
tool in many fields of combinatorics, including additive combinatorics, combi-
natorial geometry and graph theory.

In this paper, I will introduce some applications of Combinatorial Nullstel-
lensatz in the study of additive coloring of Halin graphs and present new upper
bounds on additive chromatic number and additive choice number of cubic Halin
graphs. And I will prove that if H is a Halin graph and the characteristic tree
of H has even leaves, then H has an additive coloring from the vertex set of H
to {1,2,d} with d is upper bounded by 1 plus 3 times the maximum degree of
H.

Keywords: additive coloring, additive chromatic number, additive choice num-
ber, sigma chromatic number, Halin graph, Combinatorial Nullstellensatz.
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An Infinite Series of Counterexamples to the
Annihilation Number Conjecture
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For a graph G, let n(G), m(G), a(G), 1(G) denote the order, the size, the cardinality
of a maximum independent set, and the cardinality of a maximum matching, respectively.
Let (G) stand for the family of all maximum independent sets. If «(G) + u(G) = n(G),
then G is a Konig-Egervdry graph [3, 10]. For instance, each tree is a Konig-Egervary
graph.

Let dy < dy < --- < d, (@) be the degree sequence of a graph G. Pepper [9] defined

k
the annihilation number h (G) as the largest integer k such that »_ d; < |E|. For A CV,
=1

let deg(A) = > deg(v). Every A C V satisfying deg(A4) < m(G) is an annihilating set.
vEA
An annihilating set A is mazimal if deg(AU{v}) > m(G), for every v € V — A, and it is

mazimum if |A| = h(G) [9]. The relation between the annihilation number and various
parameters of a graph were studied in [1, 2, 4, 6, 8].

Theorem 1 [7] For a graph G with h(G) > @, a(G) = h(G) if and only if G is
Konig-Egervdary and every mazimum independent set is maximum annihilating.

Conjecture 2 [7] Let G be a graph with h (G) > @ Then o (G) = h(G) if and only
if G is Konig-Egervdry and every mazimum independent set is maximal annihilating.

Consider the tree from Figure 1: T has the degree sequence (1,1,1,1,1,1,2,2,3,3,4),
m(T) =10, h(T) =8 > a(T), Q(T) = {S}, where S = {z1, %2, x3,24, %5, Ts,x7} has
deg (S) = 8. Thus S is a (unique) maximum independent set but not a maximal
annihilating set.

T2 T3 Tq L5 L6

1 @ T7

Figure 1: A tree with a (T') = 7.

Combining several related results on strong unique maximum independence trees [5],
we disprove Conjecture 2, by proving the following.
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Theorem 3 There exist a tree T of order 2k+1,k > 4 and a tree of order 2k+4,k > 3,
such that h (T') > @ and each S € Q(T) is a maximal non-maximum annihilating
set. For instance, the trees from Figure 2.

by

ag V2

Top11 az  Toptqa V4
ai U1
Figure 2: Odd and even tree counterexamples.
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Abstract

Graphs considered in this paper are finite simple graphs. The problem on generator subgraphs of a
graph was introduced by Gervacio in 2008. Let G be a graph with E(G) = {e1,ea,...,en}, for some
positive integer m. The edge space of G, denoted by &(G), is a vector space over the field Zs = {0, 1}.
The elements of &(G) are all the subsets of E(G). Vector addition is defined as X +Y = XAY, the
symmetric difference of X and Y, for X, Y € &(G). Scalar multiplication is defined as 1 - X = X and
0-X =0, for X € &(G). The set S C &(G) is called a generating set if every element of E(G) is a linear
combination of the elements of S. For a nonempty set X € &(G), G[X] denotes the smallest subgraph of
G with edge set X. If H is an arbitrary subgraph of G, then the set Ey(G) = {A € &(G) : G[A] ~ H}
denotes the uniform set of H with respect to G while &5 (G) denotes the subspace of &(G) generated
by Ey(G). If Ex(G) = &(G), that is Ey(G) is a generating set, then we call H a generator subgraph
of G. Let x and y are vertices of a graph G. The distance between = and y in G, denoted by d(z,y),
is the length of the shortest path joining x and y. The square of the cycle C,,, denoted by C2, is the
graph obtained from C,, by adding the edge [z, y] to the cycle C,, if and only if d(z,y) = 2. We identify
some classes of generator subgraphs of C2. The following are the results:

Theorem 1. Let p and k are positive integers. Then the star graph S, is a generator subgraph of C?
if and only if p=1 orp=3.

Theorem 2. Let k and n are positive integers. Then the path Py, is a generator subgraph of C2 if and
only if k is even and 2 < k <n.

Theorem 3. Let n and r be positive integers. Then the tadpole graph T3, is a generator subgraph of
C2 if and only if v is even and 2 <1 <n — 3.

Moreover, we established a sufficient condition for the generator subgraphs of C2. A pendant P in a
graph, as defined by Gervacio [5], is an induced subgraph isomorphic to P; where one vertex has degree
1, the second vertex is adjacent only to the other two vertices.

Theorem 4. Let H be a subgraph of C2. If
i. |E(H)| is odd; and
1. H contains a pendant Ps

then H is a generator subgraph of C2.

Keywords: Edge Space, Square of a Cycle, Edge-Induced Subgraph, Uniform Set, Generator Subgraph.
Mathematics Subject Classification: 05C25
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We use the terminology polyhedron for a polyhedral surface in R? which is
permitted to touch itself but not self-intersect. A flat folding of a polyhedron is
a folding by creases, without self-crossing, into a multilayered flat folded state
so that the number of creases is finite. There are several ways to continuously
flatten polyhedra in [1-5]. Recently, the second author proposed the problem
of continuous flattening of polyhedra with some divisions, i.e., some of whose
edges are incident to three or more faces (see [6]). In this talk, we mean a belt
as the set of side faces of a right prism, and call a set of (multilayer) pyramidal
faces (or polygonal faces) inscribed inside the belt a pyramidal complexr. We
discuss continuous flattening of pyramidal complexes.

A-»
—-
<= "

Figure 1: A flattening motion of a pyramidal complex composed of 4-layers
inscribed inside a belt.

Figure 1 shows an example of continuous flattening of a pyramidal complex
of 4-layers composed of three pyramidal faces and a base of the belt. By fur-
ther elaboration of the folding methods discussed in [4,5], continuous flattening
motions of various type of pyramidal complexes can be obtained.

For each pyramidal face composed of n triangles, each of n edges adjacent
to the top vertex and each of n bottom edges are called a radial edge and a
horizontal edge, respectively. Especially, we focus on the continuous flattening
motion so that every radial edge is rigid. This implies that every radial edge
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can be made by rigid materials.

The purpose of this talk is to find continuous flattening motions for some

classes of pyramidal complexes so that every radial edge is rigid. We provide
some conditions for the existence of continuous flattening motions of pyramidal
complexes, and also present an example which does not satisfy those conditions
and cannot be flattened continuously in our method. Furthermore, we discuss
the rigidity of the horizontal edges during the flattening motions.
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On the diameter of bisubmodular polyhedra
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1 Introduction

Finding good upper bounds on the diameter of polyhedra is a fundamental problem in polyhedral
combinatorics theory. The diameter §(P) of a polyhedron P is the graph diameter of its 1-skeleton.
In other words, it is the smallest number k& such that every pair of the vertices of P can be connected
by using at most k edges of P.

The diameter of polyhedra has an important application in complexity analyses of the simplex
method. In this context, a major open problem is the polynomial Hirsch conjecture, which asks for
a polynomial upper bound p(d,n) on the maximum possible diameter of d-dimensional polyhedron
with n facets; see e.g. [6, 10]. Another major open problem is concerned with lattice polytopes, to
which one can apply more geometrical tools [2, 3, 7].

On the other hand, it is also important to understand the behavior of the diameter using specific
polyhedra. A good example would be the zonotope, which was utilized in [4] to analyze the diameter
of lattice polytopes. Other important examples are the associahedra [8] and the permutahedra, to
which we have the sharp estimates on the diameter.

2 Main result

In this talk, we give a sharp estimate on the diameter of the bisubmodular polyhedra. The bisub-
modular polyhedron generalizes several important polyhedra and is related to the permutahedron
since a permutahedron can be regarded as a facet of a submodular polyhedron.

For a finite set D with size d, let 3” = {(X,Y)| X,Y € D, X NY = (}}. We define two binary
operations, reduced union L and intersection M on 37 as

(Xl,Yl) L (XQ,YQ) = ((Xl U XQ) — (Y1 U }/2), (}/1 U Yg) — (X1 U XQ)),
(Xl,Yl) [l (XQ,YQ) = (Xl NXs, Y1 N }/2)

for each (X1,Y1),(Xo,Y2) € 3P. A function f: 3P — R is called bisubmodular if
(X1, Y1) + f(Xo,Y2) > f((X1,Y1) U (X2,Y2)) + f((X1, Y1) M (X2, Y2))
holds for each (X1,Y7), (Xa,Y2) € 3P. A polyhedron defined by

P(f) = { v 2 eRP V(X,Y) e3P Y a(i) - ) a(i) < fX,Y) }

i€ X €Y

*Department of Mathematical Sciences School of Science, Tokai University; yasuko@tokai-u. jp
TDepartment of Information and Computer Technology, Tokyo University of Science; sukegawa@rs.tus.ac.jp
Department of Communication and Business, Edogawa University; zhan@edogawa-u.ac. jp
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is called bisubmodular polyhedron if f is bisubmodular.

We show that the diameter of the bisubmodular polyhedra is at most d?. Recall that d corre-
sponds to the dimension. We also show that this bound is tight, and is also valid for monotonic
diameter. The key ingredients of our proof are from [1, 5, 9].
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1. Wythoff’s Game

We study a variant of the classical Wythoff’s game. The classical Wythoff’s game is played with two piles of stones,
and two players take turns to remove stones from one or both piles. When removing stones from both piles, an equal
number must be removed from each. The player who removes the last stone(s) is the winner.

An interesting question in combinatorial game theory has been to determine what happens when the rules are
modified to allow for a one-time pass, that is, a pass move that may be used at most once in a game, and not from
a terminal position. Once the pass has been used by either player, it is no longer available. Combinatorial games
with a pass have been studied by many mathematicians (see [2] and [3]); however, difficulties related to the underlying
structure of the game and the theory of games with a pass have not yet been resolved. The classical Nim with three piles
becomes a very complicated game when the pass move is introduced. The authors have also studied a combinatorial
game with a pass; see [1].

In the present research, the authors studied Wythoff’s game with a pass and discovered the following facts (a) and
(b). Fact (a) may be surprising for some experts of combinatorial game theory, and (b) follows from (a) and the result
of Horrocks and Nowakowski [3].

(a) When the pass move is still available, the P-positions of the Wythoff’s game with a pass are almost the same as
those of Grundy value 1 in Wythoff’s original game.

(b) The graph of P-positions in Wythoff’s game with a pass when the pass is still available is very similar to the graph
of P-positions in the classical Wythoff’s game.

We denote by {z, y, p} the condition of the game, where z, y define the numbers of stones on the piles, and additional
parameter p denotes whether the pass is still available (p = 1) or has already been used (p = 0). When p = 0, the
game is mathematically identical to the classical Wythoff’s game.

Definition 1. We define the movements of stones in Wythoft’s game with a pass as follows.

(1) Forz,y € Z>o, let move(z,y,p) = {(x —s,y,p) : 1 < s <z}U{(z,y—t,p): 1 <t <y}lU{(z—s,y—s,p):
1 <s<min(x,y)} U{(z,y,0)}ifc+y >0andp = 1.

(#3) move(z,y,p) = {(x—s,y,p) : 1 < s < z2}U{(z,y—t,p): 1 <t <y}U{(z—s,y—s,p) : 1 < s <min(z,y)}
ifr+y=0o0rp=0.

We review some necessary concepts in combinatorial game theory; see [6].

Definition 2. (i) The minimum excluded value (mex) of a set S of non-negative integers is the least non-negative
integer that is not in .S.

(i) Each position (x, y, p) has an associated Grundy number G(z, y, p).

The Grundy number is calculated recursively as G(x, y, p) = mex{G(u,v,q) : (u,v,q) € move(x,y,p)}.

Two positions of the game are of particular importance:

(4¢) From A -positions, the next player can force a win, as long as the player plays correctly at every stage.

(iv) From P-positions, the previous player (who will play again after the next player) can force a win, as long as that
player plays correctly at every stage.

Theorem 1. (z,y, p) is a P-position if and only if G(z,y,p) = 0.
This is a well-known theorem, and the positions of Grundy value 0 are important because of this theorem.

Definition 3. Let A = {(0,1), (1,0),(2,2),(3,6),(6,3),(5,7),(7,5)} and B = {(0,0),(1,3),(3,1),(2,5), (5,2),
(6,7),(7,6)}.

The following theorem proves fact (a).
Theorem 2. {(z,y) : G(z,y,1) =0} = {(z,y) : G(z,y,0) =1} U B — A.

G(z,y,1) = 0if and only if (z,y, 1) is the P-position of the Wythoff’s game with a pass when the pass move is
still available, and G(z, y,0) = 1 if and only if (x, y, 0) is the position of Grundy value 1 of Wythoff’s original game.
Therefore, by Theorem 2 and the fact that A and B are a finite set with eight elements, we prove fact (a).
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Lemma 1. For each position (z,y) € T}, there exists some (z',y") € Ty such that | x — 2’ |[< 2and | y — ¢ |< 4.
Proof. This follows from Corollary 5.14 in [5]. (]

By Lemma 1 and Theorem 2, the graph in Figure 1 is very similar to the graph in Figure 2, which is in line with
fact (b) mentioned earlier.
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Figure 1. Graph of P-positions in the classical Wythoff’s Figure 2. Graph of P-positions in the Wythoff’s game
game. with a pass when the pass is still available.

By Theorem 2, we prove that when the pass move is still available, P-positions of the Wythoff’s game with a pass
are almost the same as the positions of Grundy value 1 of Wythoff’s original game.

Then, it is natural to look for other combinatorial games that have the same type of features. There are variants
of Wythoff’s game very similar to the original Wythoff’s game. What type of features do these games have when we
introduce a pass move?

Definition 4. (i) A variant of Wythoff’s game wherein the players are not allowed to remove stones from the smaller
pile when the two entries are not equal.

(#i) A variant of Wythoff’s game with an extra move allowing players to remove h stones from the smaller pile and &
stones from the larger pile, where h and k are arbitrary natural numbers such that they are smaller than the number of
stones in the smaller and larger piles, respectively, and k& < h.

Theorem 3. The following sets (¢), (i), and (i) are the same.

() The set of P-positions of the variant of (¢) in Definition 4,

(43) The set of P-positions of the variant of (i¢) in Definition 4, and

(#i7) The set of P-positions of the original Wythoff’s game (without a pass).

For a proof, see [7].
The authors discovered facts that are similar to the fact presented in Theorem 2 for the variant of (i7) in Definition
4 through computer calculations. They presented these facts in Example 1, but they have not managed to prove them.

Example 1. When a pass move is introduced, the variant of Wythoff’s game of (i) of Definition 4 has a characteristic
very similar to that of Wythoff’s game with a pass. We have discovered the following fact through calculation using
the software Mathematica.

For z,y < 650, the number of elements in {(z,y) : G(x,y,1) = 0} is 497, and the number of elements in {(z,y) :
G(z,y,1) = 0and G(z,y,0) = 1} is 475. Since 475/497 = 0.9557, it seems that a large majority of elements of set
{(z,y) : G(z,y,1) = 0} belong to set {(z,y) : G(x,y,0) = 1}. This is very similar to fact (a) and Theorem 2.

For the variant of Wythoff’s game of (i) in Definition 4, there does not exist any such fact.
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1. Chocolate Games

Here, the authors present formulas of Grundy numbers for a chocolate game. This chocolate is a variant
of the chocolate presented in JCDCG? 2016 [1], as well as of the chocolate game presented in [2].First, we
describe the rule of the chocolate game.

(i) A chocolate bar is a rectangular array of squares, but with some squares removed. There is a poisoned
square at the bottom left of the bar. Each player, in turn, breaks the bar in a straight line along the grooves
and eats the piece he/she broke off. The player who manages to leave an opponent with the single bitter
block (black block) is the winner.

(it) There is an upper bound for the number of columns and rows that can be removed in a turn.

Because of (i), the mathematical structure of the chocolate game in this article is very different from
that of the game in JCDCG?® 2016 [1] and [2]. Our main results are Theorem 2 and Theorem 3, whereas the
main result of [2] is Theorem 4, and the result of [1] is a generalization of Theorem 4.

The chocolate game in Figure 1 is mathematically equivalent to the game with a pile of two stones and
a pile of five stones; thus, we concentrate on the games demonstrated in Figure 2.
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In this study, we consider the Grundy numbers of a chocolate bar.
We now determine the shape of the bar. Let Z>¢ be the set of non-negative integers.

Definition 1. Let k be a natural number, and let f(z) = [ %]

For z,y € Z>¢, the chocolate bar will consist of 241 columns, where the 0-th column is the bitter square, and
the height of the i-th column is ¢(i) = min(f(i),y) + 1 for i = 0,1, ...,x. We will denote this by CB(f,x,y).
Thus, the height of the i-th column is determined by f, ¢, and y.

Note that the chocolate in Figure 2 is CB(f,18,2), where f(x) = [§]. We briefly review some necessary
concepts of combinatorial game theory; see [3] for more details.

Definition 2. (a) P-positions are winning positions for the previous player (the player who just moved), as
long as that player plays correctly at every stage.
(b) N-positions are winning positions for the next player, as long as that player plays correctly at every stage.

Definition 3. (i) Let z, y be non-negative integers. We represent them in base 2, so that z = Y. z,;2*

and y = >, ;2! with z;,y; € {0,1}. We define the nim-sum z ®y = > w;2!, where w; = z; +y; (mod 2).
i=0

(73) The minimum excluded value (mex) of a set S of non-negative integers is the least non-negative integer

that is not in S.

(ii7) Let p be a position of an impartial game. The associated Grundy number is denoted by G(p) and is

recursively defined by G(p) = mez{G(h) : h € move(p)}.

Theorem 1. Gg(g) = 0 if and only if g is a P-position.
For a fixed function f, the position of CB(f,z,y) will be denoted by coordinates {z,y}.

Definition 4. For z,y € Z>(, we define move¢({z,y}), which is the set of positions that can be reached by
making precisely one move from {z,y}.
Let moves({z,y}) = {{z,v} : v < y} U {{w, min(y, f(w))} : w < x}, where v,w € Z>.
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Example 1. Here, we explain movey when f(t) = | £]. If we start with the chocolate bar in Figure 3, whose
coordinates are {x,y} = {18,2}, and reduce y = 2 to y = 1 by cutting horizontally, then we have the bar in
Figure 4, whose coordinates are {z,y} = {18,1}.

If we start with the chocolate bar in Figure 3 and reduce z = 18 to = = 16 by cutting vertically, then we
have the bar in Figure 5, whose coordinates are {z,y} = {16,2}. We note that {16, min(2, [1¢])} = {16,2},
and the reduction of z does not affect y.

If we start with the chocolate bar in Figure 3 and reduce z = 18 to « = 13 by cutting vertically, then we
have the bar in Figure 6, whose coordinates are {z,y} = {13,1}. We note that {13, min(2, [ 2])} = {13,1},
and the reduction of = decreases the value of y. Therefore, we have {18,1}, {16,2}, {13,1} € moves({18,2}).
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The authors discovered the following facts (a) and (b) for the chocolate game f(t) = [ ].
(a) When the upper limit for the number of columns and rows to be taken is 8k, we have eight formulas for
Grundy numbers. See Theorem 2.
(b) When the upper limit is smaller than 4k, the formula for Grundy numbers can be expressed by two simple
equations. See Theorem 3.
Next, we study these facts (a) and (b) one by one.
(a) When the upper limit is 8k, there are eight formulas for Grundy numbers.

Theorem 2. Suppose that the upper limit is 8% for a natural number k. Let G(z,y) be the Grundy number
of CB(f,x,y) for f(t) = |{z]. Then, we have the following statements.
(1) G(z,y) = x Dy for any = < 8k.
i) G(x,y) = 8k for (z,y) = (8k +1,1) or (8k + 2,2).
iii) G(x,y) = 8k + 1 for (z,y) = (8k + 1,2).
G(z,y) = 8k + 3 for (x,y) = (12k, 3).

iv
)
v) G(z,y) = 8k + 4 for (z,y) = (16k,4).
z) G(z,y) =8k + 1 for (x,y) such that y = x/(4k) and y = 2 (mod 3).
vii) G(x,y) = 8k + 2 for (z,y) such that y = z/(4k) and y = 0 (mod 3).
viii) G(x,y) = 8k + 3 for (z,y) such that y = x/(4k) and y = 1 (mod 3).
iz) G(z,y) = x —y mod 8k + 1 for z,y that do not satisfy either of the above conditions (i),...(vii7).

b) When the upper limit is smaller than 4k, the mathematical structure becomes very simple. There are
wo formulas for Grundy numbers.

(i
(
(i
(
(v
(
(
(
(
t

Theorem 3. Let f(t) = [ 3] Let u be the upper limit of the number of columns and rows of chocolates to
be cut. If u is smaller than 2k, then we have the following statements.

(1) G(z,y) =u+1 for (z,y) = (2k, f(2k)).

(i) G(z,y) =z —y (mod u+ 1).

(c) If there is no upper limit for the number of columns and rows to be cut, the mathematical structure of
the game is almost the same as that of the classical nim.

Theorem 4. Let G(z,y) be the Grundy number of CB(f, z,y) for f(t) = |{z]. Then, G(z,y) =z ® y.

For a proof of this theorem, see [2].
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Extended Abstract

Let G be a simple graph. A set S C V(G) is called a connected interior
dominating set of G if S is an interior dominating set of G and the induced
subgraph (S) is connected. The minimum cardinality of a connected interior
dominating set in G is called connected interior domination number of G and is
denoted by .ra(G). A connected interior dominating set in G with cardinality
Yerd(G) is referred to as 7y.r4-set. In this paper, we provide some basic properties
of the connected interior dominating sets and characterize the connected interior
dominating sets under the join and corona of graphs. Then we determine the
corresponding connected interior domination number of these graphs. The study
of these concepts is motivated with application of locating domination in graphs.
The following are some important results of this paper:

Remark 1. Let G be a connected graph of order n > 3. Then 1 < v74(G) < 7e14(G) <
[Int(G)].
Theorem 2. Let G be a graph of order n > 4. Then 7.4(G) = 2 if and only if
’YIt(G) = 2.

Theorem 3. Let G and H be connected graphs. If v.;4(G) = 1 and ~y.;4(H) = 1, then
the connected interior dominating set of G + H does not exist.

Theorem 4. Let G and H be connected graphs such that G + H admits a connected
interior dominating set. Then S C V(G + H) is a connected interior
dominating set of G + H if and only if at least one of the following is true:

(i) S CV(G), S is a connected interior dominating set of G and v(H) #
1.
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(ii) S C V(H), S is a connected interior dominating set of H and v(G) #
1.

(i) SNV(G) and SNV (H) are nonempty subsets of the interior sets of
G and H, respectively and v(G) # 1 and y(H) # 1.

Lemma 5. Let G be a connected graph and H be any graph. Then the subgraph
(V(G)) induced by V(G) C V(G o H) is a connected subgraph of G o H.

Theorem 6. Let G be a nontrivial connected graph and H be any graph. Then S C
V(G o H) is a connected interior dominating set of G o H if and only if
S =V(G).

Corollary 7. Let G be a nontrivial connected graph and H be any graph. Then 7.74(Go
H) = [V(G)| = y14(G o H).

Theorem 8. Let a and b be positive integers such that ¢ < b and b = 2a — 1 for
a < b. Then there exists a connected graph G such that v;4(G) = a and
’ydd(G) =b.

Theorem 9. Let a, b and ¢ be positive integers such that 2 < a < b < cand 2¢c = 3a—2
if a is even and 2¢ = 3a — 3 if a is odd when a = b < ¢, 2b = 3a and
c=2a—11if ais even and 2b = 3a + 1 and ¢ = 2a — 1 if a is odd when
a < b < c. Then there exists a connected graph G such that v;4(G) = a,
vit(G) = b and ¥.14(G) = c.

Corollary 10. Given a positive integer n, there exists a connected graph G such that
Ye1a(G) — v1:(G) = n, that is, the difference 7y.;q — Y74 can be made
arbitrarily large.

Keywords: interior domination, connected interior domination, join, corona
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On open neighborhood locating-dominating set of
Mycielski graphs

Suhadi Wido Saputro

Bandung Institute of Technology, Indonesia

A monitored system can be modelled as a graph G. It is generally assumed that a
detection device located at vertex v in G, can detect an intruder only if the intruder is
at v or at a vertex which is adjacent to v. The placing monitoring device in the system
can be considered as an open neighborhood locating-dominating problem. An open
neighborhood locating-dominating set (OLD-set) S in a graph G is a vertex set of G such
that for every vertex v in (G, its open neighborhood has a unique non-empty intersection
with S. The minimum cardinality of an OLD-set of G is called as the open neighborhood
locating-dominating number of G, denoted by OLD(G). In this paper, we consider a
Mycielski graph of G, denoted by u(G). For any connected graphs G, we determine
the relation between OLD(u(G)) with OLD(G), order of G, or the maximum degree of
G. This talk is based on joint work with Wedyata Larasartika (Bandung Institute of
Technology).
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Abstract

Regular and semi-regular polytopes are studied widely, but there are still many unknown parts
remained [1]. Wythoffian is a generalization of regular and semi-regular polytope. It is shown in [2]
that a combinatorial and topological calculation (without use of coordinates) for the global and local
metric of Wythoffians whose finite reflection groups belong to A,, B,, C,, F4, G2, H3, Hs and I,(p).
At that time, D,, E¢, E; and Eg were ‘empty’ because of several difficulties; (1) two kinds of
constituents (a,.; and hy,.;in D,, o, and B,.;in E,), (2) bifurcation of Coxeter-Dynkin diagram
and (3) duality vanished and triality newly appears. In this talk, we will give a recurrence algorithm
for them beyond the difficulties.

To show the effectiveness of calculation called Wythoff arithmetic, let us take a 6-Wythoffian
polytope P belonging to E¢ which is expressed as Fig. 1 or D5 as Fig. 2 by Coxeter-Dynkin diagram.
Denoting by f;, the number of k-faces of P, it is calculated by the arithmetic;

(a) fo =432, f; = 3240, f, = 7920, f; = 7200, f, = 2430 and f; = 342 (Table 1)

(b) fo = 480, f; = 1200, f, = 1040, f; =360 and f, = 42 (Table 2), respectively.

@ ° o .
T 16 0 0 0 0 0 0 7 F 977 ~ ) o
80 500000 216 60 6 0 0 0 O 16
160 10 2 0 0 0 O 720 1209 0 0 0 0 -80
120 10 1. 1 0 0 0 1080 80 5 1 00 0 160
26 500100 648 201 0100 120
1 100010 99 100010 26
. 0 oo0o0o00 1 J [ 1], | 00000 1] |1
Tablel Table2
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Abstract

SL block is a kind of octocube that can be used as a building element to construct
semi-interlocking structures of various shapes [1]. It was uncovered that conjugate
pairs of SL blocks can be sequentially concatenated into strands that are extensible in
three orthogonal directions [2]. Semi-interlocking is defined as a property of
composite structures that allows some parts of the assembly not entirely locked
within the configuration, but with one direction held to the structure by friction and
can be removed by force. A fully interlocked structure can be strong and stable but
would certainly allow no feasible process to construct. A semi-interlocked structure
may remain stable under forces from various directions, and yet allows at least one
feasible sequence for assembling and disassembling. SL strands may form enclosed
loops if both ends meet at the same location. All looping SL strands are semi-

interlocking.

String re-write grammars can be used to define languages of SL strands. Generative
processes are defined to create stylish configurations of SL constructions based on
some grammar definitions. Syntax-directed translations can be applied to convert
one SL strand to some others by replacing re-write rules of one grammar with re-
write rules from some others. Experiments were carried out and interesting results

are displayed and discussed.

Looping SL strands can be represented as sequences of concatenations. An algorithm
to derive feasible sequences for assembling and disassembling of semi-interlocked SL
strands is presented. The algorithm is based on syntax directed translations of an
input grammar that defines possible concatenations of SL conjugate pairs and an
output grammar that generates assembling processes for SL strands. In the
translation process, an attributed input grammar is used to parse the syntactic
structures of the processed SL strand. The syntactic structures are used to guide the

output grammar to generate assembling sequences for construction. The reverses of
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generated sequences would also imply feasible ways for disassembling.

With the grammatical approach, it might be possible to define high level operations
and analysis that enable the design and assessment of very complicated
constructions that are made of very simple and primitive elements such as SL blocks.
Future study may be directed towards the interactions between generative processes
of grammars and the context where the deviations take place.

[1] Shen-Guan Shih, On the hierarchical construction of SL blocks - A generative
system that builds self-interlocking structures, S. Adriaenssens, F. Gramazio, M.
Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016, 124-
137, 2016.

[2] Shen-Guan Shih, The art and mathematics of self-interlocking SL blocks, Bridges
2018 Conference Proceedings, 107-114, 2018.
http://archive.bridgesmathart.org/2018/bridges2018-107.pdf
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The Huffman Tree Problem
with Linear Functions with Upper Bounds

Yuichi Shirai* Hiroshi Fujiwara* Hiroaki Yamamoto*

The Huffman tree problem [Huf52] is a problem in which for a sequence of n weights, the
task is construct a full binary tree that minimizes the weighted sum of depths of the leaves each
corresponding to a weight. The General Cost Huffman Tree Problem [FJ14] is an extension of
the Huffman tree problem. The input is a sequence of n functions. The task is to obtain a
full binary tree that minimizes the sum of the function values with respect to the depths of the
leaves each corresponding to a function. Formally, this problem is formulated as below.

General Cost Huffman Tree Problem

Input: A sequence of functions fi, fa,..., fn : N — Q.
Output: A binary tree T' having leaves [, s, ..., ;.
Objective: Minimize Y . ; fi(depth(l;,T)).

Here, depth(l;, T') represents the length of the path from the root of T' to the leaf [;.

The difficulty of the problem depends on what class the functions in the input sequence
belong to. Table 1 summarizes previous works and our results. Fujiwara and Jacobs [FJ14]
proved the General Cost Huffman Tree Problem to be NP-hard even for 0-1 functions. In
contrast, the original Huffman tree problem [Huf52], which is a special case of the General
Cost Huffman Tree Problem, admits an O(nlogn)-time algorithm. Fujiwara, Nakamura, and
Fujito [FNF15] gave an O(nlogn)-time algorithm for the case of unit step functions. Fujiwara
and Jacobs [FJ14] provided an O(n?logn)-time algorithm for non-decreasing convex functions.
It is open whether the General Cost Huffman Tree Problem with non-decreasing non-convex
functions can be solved in polynomial time or not.

We study two subclasses of non-decreasing non-convex functions and give polynomial-time
algorithms for each. Our target is linear functions with upper bounds, represented as:

fi(x) = w; - min{z, t;}

Table 1: Complexity results for the General Cost Huffman Tree Problem.

class of functions time complexity

linear O(nlogn) [Huf52]

unit step O(n log n) [FNF15]
class 1 O(n?) [this paper]
class 2 O(n?logn) [this paper]
non-decreasing convex | O(n?logn) [FJ14]
general NP-hard [FJ14]

9This work was supported by KAKENHI (16K00033, 17K00013, and 17K00183).
*Shinshu University
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with w; > 0 and t; > 0 for all : € {1,2,...,n}. We investigate the following two classes:
e Class 1: sequences of functions { f;} such that w; = wy = -+ = wy,.
e Class 2: sequences of functions {f;} such that t; =ty =--- =t,.

Theorem 1. There exists an O(n?)-time algorithm for the General Cost Huffman Tree Problem
for class 1 functions.

Theorem 2. There exists an O(n?logn)-time algorithm for the General Cost Huffman Tree
Problem for class 2 functions.

Our two algorithms have the same structure: Sort the input sequence, solve subproblems,
and then choose the best solution. The key idea behind is the fact that: if the input sequence
is sorted (specifically, in a descending order of ¢; for class 1, and in a descending order of w; for
class 2), the set of functions such that depth(l;,T) < ¢; in an optimal solution is some prefiz
of {1,2,...,n}. Hence, it is sufficient to check only n + 1 ways. Given a guess of the set of
functions such that depth(l;, T") < t;, a subproblem is constructed by setting w;’s out of the set
as zero and all ¢;’s as co. It is shown that if the guess is correct, an optimal solution to the
subproblem is also optimal to the original problem.
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Abstract

Chaidee and Sugihara recently proposed a conjecture about the non-existence of two-dimensional
convex polygon whose vertices are at given radii R from the origin. In this study, We prove the conjecture
and provide some necessary and sufficient conditions on R for the existence of such convex configuration.

1 Introduction

A natural problem about the placement of n points on a plane is whether one could satisfy certain constraints
while keeping such placement convex. In other words, the question is whether a conver configuration exists
for a given set of constraints. A known example is the construction of convex polygon whose side lengths,
also called linkages, are fixed [2, 3].

Recently, Chaidee and Sugihara [1] studied a different problem about convex configuration which asks
for the existence of convex polygon (in the case of two-dimensional space) or convex polytope (in the case
of three-dimensional space) whose vertices are at specified distances, also called radii, from the origin.

The answer to the above question is positive when one considers the case of three-dimensional space.
However, it remained unclear whether a convex configuration exists for any given radii R in the case of
two-dimensional space. Chaidee and Sugihara [1] proved that the answer is positive under some conditions
on R and proposed the conjecture that the convex configuration does not always exist in the general case.

In this study, we prove the conjecture and provide some necessary and sufficient conditions on R for such
convex configuration to exist.

2 Convex configurations for some R
For some families of given radii R, there are simple strategies to construct the convex configurations.

Chaidee and Sugihara [1] have illustrated strategies when all of the radii are distinct (Figure 1a) and when
none of the value of radii is repeated more than four times (Figure 1b).

Figure 1: Strategies for constructing convex configurations for some R

Here, we additionally observe that when there are no more than four distinct values of radii, i.e., R =
{T1y ey T1, 72y ey T2y ooty Ty oy T for k < 4 and 1 > 79 > ... > 1, One can place points along the arc of circle
with radius r; followed by drawing a tangent line to the circle with radius r;;1 < r;, as shown in Figure lc,
to obtain a convex configuration. This is always possible because the total angle around the origin covered
by k < 4 tangent lines is less than %’T < 27 and the angle covered by each arc can be arbitrarily small.

3 A necessary and sufficient condition of R which has convex
configuration

Definition 1. For a given finite set R, a permutation (r;)I; of R is called a initial sequence of R, if
r1 = max’R.
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To prove that the given set R cannot have a convex configuration, we need to prove that the convex
polygon cannot be constructed for any initial sequence (r;)7;.

Al
A touch link touch link touch
i Ty Tig Tis
CJ
'
e e
» '
= '
5 H e o e o
E '
: e
'
: @ o
'
k=1 k=2 k=3

Sequence (r;)!;

Figure 2: (Left) the points from an initial sequence (r;)I, of R; (right) the plot of the radii where the
sequence starts at the point A counterclockwise.

Definition 2. Let S = (r;)!_; be an initial sequence of R and define 7,4y, = 7, for m > 1. Let jo = 1.
For k > 1, let i), be the smallest index such that ix > jr—1 and r;, < 74, 41. Let t; be the index such that
ty > ig, 13, = ... =11, and 1y, # ¢, 11. Let ji be the smallest index such that ¢, < ji and r;, > 7, +1. We
call r;, a touch of S, and call r;, a link of S. Define

l
a(S) = Z (arccos "k 4 arccos 7"%)

k—1 Tjk—1 Tjk

where j; =n + 1.

Definition 3. Let S = (r;)"_; be an initial sequence of R and define 7,4, = r,, for m > 1. We call S

a good sequence of R, if either a(S) < 27 or a(S) = 27 and r; # 741 for all i > 1. We call S a perfect
sequence of R, if a(S) < 27.

Theorem 1. For a given finite set R,

1. R has a convex configuration if and only if there exists a good sequence (r;)I"_; of R.

2. R has a strictly convex configuration if and only if there exists a perfect sequence (r;)_; of R.
The theorem can imply Theorems 2 in [1], and obtain the following result.

Theorem 2. [1] For a given positive radii set R = {r(1,1), s T(1,m1)s T(2,1)1 > T(2,ma)> = T(ks1)> o0 T(kymn) }
such that 7 1) = ... = (i m,) for each i = 1,..,k and 1 < m; < 4. Then there exist a strictly convex
configuration V' with respect to the radii set R.

Corollary 1. If R consists of most four different radii such that each radius has finitely many points, then
there exist a strictly convex configuration V with respect to the radii set R.

Theorem 3. There exists a set R such that R does not have a convex configuration.

The set R = {r1,...,71,72,...T2, ..., 'k, ...r, } such that 71 > ro > ... > ry for whom a convex configuration
does not exist should meet the following conditions: k > 5, some r; is repeated more than 5 times, and
arccos (:—f) + .-+ 4 arccos (T:—fl) + arccos (:—’;) > 2m.
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Delete Nim

Koki Suetsugu
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1 Introduction

Combinatorial game theory is the mathematical study for
strategy of perfect information games in which there are
neither chance moves, nor hidden information. Among
early results of combinatorial game theory there is a win-
ning strategy for Nim by Bouton [1] in 1902. Nim is a
two-player game with some heaps of stones in which the
player to move chooses one of the heaps and takes away
arbitrary numbers of stones from it. The upper part of
Fig. 1 shows a game position of Nim. In the position,
there are two heaps of stones: one has three stones and
the other has two stones. Since each player can remove
any number of stones from a single heap, the candidates
for the next positions are shown in the lower part of the
figure. The winner of Nim is the player who takes away
the last stone. We express Nim positions by the number
of stones in each heap like (3,2).

ooyz

o0 :./:»

Figure 1: The Nim position (3, 2)

We say a game is in normal play if we define that the
winner of the game is the player who moves last (like
Nim). A game is called impartial if both players have
the same set of options (like Nim). In this paper, we
study only impartial games.

We say a player has a winning strategy if she can win
regardless of her opponent’s move. In an impartial game,
we say that a game position is an N -position or a P-
position if the next player (i.e. the current player) or
the previous player (i.e. the other player) has a winning

Tomoaki Abuku
University of Tsukuba

strategy, respectively. Clearly, a game position of an im-
partial two-player game is an N -position or a P-position.

In the following description, we assume that every
game is impartial and in normal play, and will end in
a finite number of moves.

We can analyze whether a Nim position is an N-
position or a P-position in a simple way, by calculating
modulo-2 sum without carry which is denoted by & (Nim
sum).

Theorem 1 (Bouton [1]).
(n1,ng,...,nE) is a P-position
np®ng®---dng =0.

Example 1. 28507 = 1001012 @ 1115 = 0, therefore,
Nim positon (2,5,7) is a P-postion.

Example 2. 46566 =100, 410155110, = 1115 =7,
therefore, Nim positon (4,5,6) is an N -postion.

A Nim  position
if and only if

1.1 Impartial game and G-value

Sprague [5] and Grundy [4] extended Bouton’s theorem
for any impartial games in normal play.

Definition 1. Let N be the set of all non-negative inte-
gers. For any proper subset S of N, we define minimal
excluded fuction mex(S) as follows:

mex(S) = min(N \ 5).

Definition 2. For any game position g, we define G-
value function G(g) as follows:

G(g9) = mex({G(g') | g = g'});
where g — g’ means that g’ is an option of g.
Theorem 2 (Spragure [5] and Grundy [4]). For any
game position g, g is a P-position if and only if G(g) = 0.

Definition 3. For any game positions g and h, we de-
fine the disjoint sum g+ h recursivey as the game whose
options are g + h' or ¢’ + h where ¢’ ranges all options
of g and h' ranges all options of h.

Theorem 3 (Spragure [5] and Grundy [4]).
game positions g and h,

For any

G(g+h)=G(g9) ®G(h).

Therefore, people have been interested in G-values of
games and some of the early results show us various
structures of G-values in some games like Welter’s game
[7], cyclic Nimhoff [3], and Lim [2].
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2 Delete Nim

Now we define a new impartial game called Delete Nim.
In this game, there are two heaps of stones. The player
chooses one of the heaps and delete it, and, she takes
away 1 stone from the remaining heap and optionally
splits it into two heaps. Fig. 2 shows a play of Delete
Nim.

S o

Figure 2: one game of Delete Nim

In this paper, we show how to compute the G-value of
Delete Nim.

To compute the G-value of a position of the game, we
need to prepare some defnitions and notations.

Definition 4. We denote the usual OR operation of two
numbers in binary notations by V.

Example 3. 3V5=11,V 101, =111, = 7.
Example 4. 9V 12 = 10015 vV 11005, = 1101, = 13.

Now we can compute the G-value of a position of Delete
Nim.

Theorem 4. We denote the position of Delete Nim with
two heaps of x stones and y stones by (x,y). Then,

G((z,y) =

where vy(n) is the p-adic valuation of n, that is,

(n#0)
(n=0).

va((z Vy)+1),

max{v € N:p" | n}

oyl = { R

Proof. Refer to the full paper. O

A game similar to Delete Nim is introduced in [6].
There is an isomorphism F'(g) from the set of all posi-
itons of the game to that of Delete Nim:

F((z,y)) = (z =Ly —1).

In [6], the P-positions of the game are shown but the
G-values of positions of the game are not discussed. By
the isomorphism, now we can compute the G-value of
position (x,y) of the game as va((z — 1) V (y — 1) + 1).

3 Conclusion

In this paper, we introduced a game for which one needs
to use the OR operaion and 2-adic valuation vs(n) in
order to compute the G-value of a position. To the best
of our knowledge, this is the only case we need the OR
operation in order to calculate the G-values. Therefore,
we think that our results would contribute to the field of
combinatorial game theory.
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Colored Finite Automata and de Bruijn Graphs
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Abstract—We previously proved the structural equality of
binary de Bruijn graph of order n and the state diagram for
minimum state deterministic finite automaton which accepts
regular language (0 + 1)*1(0 + 1)"~'. This paper extends this
result to the both k-ary versions. That is, k-ary de Brujin graph of
order n and the state diagram for minimum state deterministic
“colored” finite automaton which accepts the (k — 1)-tuple of
regular languages (0 + 1+ -+ k- 110+ 1+ --- + k —
™t and, (0414 +k—1)"(k—1)(0+1+---+k—1)"""
are isomorphic for arbitrary & more than or equal to 2, where
colored finite automata are generalization of ordinary finite
automata whose accepting states are refined with two or more
colors. We finally give some computational complexity results for
decision problems concerning colored finite automata.

Index Terms—keywords, de Bruijn graphs, finite automata,
state-minimization, NLOG-completeness

I. DE BRUIJN GRAPH

Definition 1: Directed graph defined as follows is called
k-ary order n de Bruijn graph and abbreviated DBy, j,.

Vo = {{0717"'7k_1}7l}:{0717"'7kn_1}a
£ = {(b1bz-~bmb'1b'2"'b§1)|

bi b € {0,1},i=1,--- ,n,

by = by,bg =bh, -+ ,b —b/ 1}

II. COLORED FINITE AUTOMATA

In this section, we introduce colored finite automata and
investigate their fundamental properties.

Definition 2: If a language L is expressed with a direct sum
Zle L;, k> 1, L is called colored language of k colors.

Definition 3: A 5-tuple M = (Q,%,6,q0, 5., F}) as
follows is called nondeterministic colored finite automaton and
abbreviated NCFA.

1) Q is a finite set of states,

2) X is a finite set of input symbols,

3) ¢ is the transition function from @) x X to 2@,

4) qo € Q is the initial state,

5) Zf;l F; C @ is the set of “colored accepting states”.

If each 0(q, a) is a set with exactly one element, M is called
deterministic and abbreviated DCFA.

We denote as 6(q, x) the set of reachable states, when M
starts from state ¢ and finishes after it reads the input string x.
If 5(qo, x) N F; # 0, we say that M accepts x with ith color.

Li(M) = {z € * | §(qo,x) N F; # 0}

is called the language accepted by M with ¢th color and

is called the language accepted by M. Especially, if it holds
that

we say that L(M) is unmixed and that M color-distinctly
accepts L(M). Note that when M is deterministic, it is
inherently unmixed.

For each I C {1,--- ,k}, define

Fi={SCQ|SNF#0,icI,SNF;=0,j¢I}.

Theorem 1 (Subset construction method for NCFA):
For an NCFA

k
= (Qan(Sa qo, ZFi)a

=1

let DCFA
Ml:(2Q7235/7{q0}a Z F]/)a
IC{1,- k},I#0
where
8 (S,a) = U d(p,a) for each S C Q,a € 3.
peS
And define
M') = () Li(M) — | J L;j(M)for each T C {1,--- ,k}

i€l j¢r

Then, we have the following.

(1) L(M') = Z[g{Lm Y I#£0 Li(M') = L(M).
(2) L(M) is unmixed < ZIC{l K I£D FI ZZ  F
& Li(M) = L{;(M’) for each i € {1,---,k}.
(Proof) Proof is omitted here. O

III. EQUIVALENCE OF DBy, ,, AND STATE-MINIMIZED
COLORED FINITE AUTOMATON Dy, ,,

In this section, we show that the graph structure of a certain
deterministic colored finite automaton is isomorphic to k-ary
de Bruijn graph of order n DBy, ,,.

Define

:(Q7{0717 7k

k—1
- 1}757 To, ZFi)a
1=1
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where

Q= {ro,r11," "~
5(7.070) :{7’0},
d(ro,a) ={ro,r14} foreacha €{0,1,---
d(rij,a) = {rij41} foreachi=1,---,
k—1,a€{0,1,--- ,k—1},
F,={ry,} foreachi=1,--- k—1.

yTiny = T(k=1)1, " " 77,(]'671)11}7

7k_

It is clear that Nj, ,, is unmixed and

L(Nin) = {xze€{0,1,---,k—1}* | the nth symbol
from the end of z is either
1,--+, ork—1}
= O04+1+---4+k-1)*Q4+---+k-1)
O4+1+-- k-1
= S Li(Niw),
where
Li(Nkn,) = {x€{0,1,---,k—1}|the nth symbol

from the end of z is i}
= (0+1+-+k—1)%
O4+1+--- k-1

for each i = 1,--- ,k — 1. In the following, we abbreviated

Liw = L(Nin) and LY, = Li(Ny.n)
foreachi=1,--- |k — 1.

Theorem 2: DCFA Dy, constructed from Ny, by using
subset construction method for NCFA isomorphic to DBy, j,
forany k >2,n>1.

(Sketch of Proof) Applying the NCFA version of subset con-
struction method to NN, ,,, we get the following DCFA Dy ,,.

k—1
Dk,n == (Q/a {07 ]-) o 7k - 1}76/7q(IJ’ ZF{/z})’
=1

where
= {QO;"' 7Qk”—1}7
% = qo=1[0--0].

Foreachi=1,--- ,k—1,

FJE’L} {Qik"*U T ’q(i—i-l)k"*l—l}
= {lizp_1-21]p |0<2; <k,j=1,
-,n—1}
ForeaChi:())-..7kn_]-;a€{07]-7..-7k_1}7
qk; mod k™, ifa=0,
5/((]‘ a) _ q(k;+1) mod kn> ifa=1,

q(ki+k—1) mod ks
The above description of Dy, ,, is identical to the description
of DBy, ,, in Definition 1:
Vv = {0,1,--- k™ —1},
E = {(z,(kx+i)mod k™) |xz€V,i=0,--- ,k—1}.

1},

Fig. 2. DFA Dy 1 accepting L4 1.

O

Fig 1 is the transition diagram of N4 ;. Furthermore,

D, obtained from N, ; using subset construction method
for NCFA is shown in Fig 2.

The following fact is a straightforward extension of binary

case in to k-ary one.
Fact 1: Any DCFA which color-distinctly accepts the col-
ored language Ly ,, = Zle L,?n requires more than or equal

to k" states, where for each ¢ =1,--- ,k — 1,
Ly = {ze{0,1,---,k—1}* | the nth symbol of z

from its right end is 7}.

IV. COMPLEXITY PROBLEMS CONCERNING NCFA

In this section, we investigate computational complexities
of some decision problems concerning the unmixedness of
nondeterministic colored finite automaton NCFA.

NCFAM = (Qa 27 57 q0, Z?:l FZ)7

k k
Ui:l Li(M) = Zz’:l Li(M)?

Theorem 3: The problem UM can be computed in polyno-
mial time. -
(Sketch of Proof) We can show that the complement UM of
UM can be solved in nondeterministic logarithmic space by
an off-line Turing machine. O

Reducing the nonemptiness problems of ordinary nondeter-

ministic finite automata to UM, we also get the following.
Corollary 1: The problem UM is NLOG-complete.

Instance :
Question :
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Linear-semiorders and their incomparability graphs

Asahi Takaoka*

Abstract

A linear-interval order is the intersection of a linear order and
an interval order. For this class of orders, several structural
results have been shown. In this paper, we study a natural
subclass of linear-interval orders. We call a partial order a
linear-semiorder if it is the intersection of a linear order and
a semiorder. We show a characterization of linear-semiorders
in terms of linear extensions. This gives a vertex ordering char-
acterization of their incomparability graphs. We also show that
being a linear-semiorder is a comparability invariant.

This is an extended abstract, and the full version can be found
on arXiv.
Keywords: Comparability invariant, Linear-interval orders, PI
graphs, Semiorders, Triangle orders, Vertex ordering character-
ization

1 Introduction

A graph is an intersection graph if there is a set of objects
such that each vertex corresponds to an object and two ver-
tices are adjacent if and only if the corresponding objects have
a nonempty intersection. Intersection graphs of geometric ob-
jects have been widely investigated due to their interesting
structures and their applications. See [3, 8, 14] for survey.

Well-known examples of intersection graphs are interval
graphs and permutation graphs. An interval graph is the inter-
section graph of intervals on the real line. Let L; and L, be two
horizontal lines in the xy-plane with L; above L,. A permuta-
tion graph is the intersection graph of line segments joining a
point on L, and a point on L,. A common generalization of the
two graph classes is trapezoid graphs [5, 6]. An interval on L,
and an interval on L, define a trapezoid between L; and L. A
trapezoid graph is the intersection graph of such trapezoids.
The structure of trapezoid graphs are well investigated, and
many recognition algorithms are provided. See [10, 12, 14].

There is a correspondence between partial orders and the
intersection graphs of geometric objects between the two
lines [9], [10, Theorem 1.11]. A partial order P on a set V is a
trapezoid order if for each element v € V, there is a trapezoid
T (v) between L; and L, so that for any two elements u,v € V,
we have u < v in P if and only if T'(u) lies completely to the
left of T(v). The set of trapezoids {T(v): v € V} is called a
trapezoid representation of P. By restricting the trapezoids
in the representation, many classes of orders have been intro-
duced [1, 2, 13].

An up-triangle order [1] is a partial order representable by
triangles spanned by a point on L; and an interval on L;. An
up-triangle order is also known as a PI order [3, 4, 5], where
PI stands for Point-Interval, and as a linear-interval order [11]
since it is the intersection of a linear order and an interval order.

“Department of Information Systems Creation, Kanagawa University,
Rokkakubashi 3-27-1 Kanagawa-ku, Kanagawa, 221-8686, Japan E-mail:
takaoka@jindai.jp

d f
b e
a
(2)
a b c d e S s L,
> L
(b)

Figure 1: A partial order (the dual of chevron) with a triangle
representation.

We use in this paper the term linear-interval orders to denote
such orders. Several structural results, including polynomial-
time recognition algorithms, are known for linear-interval or-
ders [4, 5, 16, 11, 15].

In this paper, we study up-triangle orders representable by
triangles spanned by a point on L; and a unit-length interval
on L,. See Fig. 1. Such an order is the intersection of a linear
order and a semiorder; hence we call it a linear-semiorder.

This paper is an extended abstract, and a full version can be
found in [17].

2 Preliminaries

A partially ordered set is a pair (V, P), where V is a set and
P is a binary relation on V that is irreflexive, transitive, and
therefore asymmetric. The set V is called the ground set while
the relation P is called a partial order on V. In this paper, we
will deal only with partial orders on finite sets.

We denote partial orders by < instead of P, that is, we write
u < vin P if and only if (u,v) € P. Two elements u,v € V
are comparable in P if u < v or u > v; otherwise u and v are
incomparable, which we denote u || v.

A partial order P on a set V is a linear order if any two
elements of V are comparable in P. A partial order P on V
is an interval order if for each element v € V, there is a (closed)
interval I(v) = [Il(v), r(v)] on the real line so that u < v in P
if and only if r(u) < I(v) for any two elements u,v € V. An
interval order is a semiorder if every interval has unit length.
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Let P, and P, be two partial orders on the same ground set
V. The intersection of P; and P, is the partial order P on V
such that u < v in P if and only if ¥ < v in both P; and P;.
We call an order a linear-semiorder if it is the intersection of a
linear order and a semiorder.

Let P be a partial order on a set V. The comparability graph
of P is the graph G = (V, E) such that uv € E if and only if u
and v are comparable in P; the incomparability graph of P is
the graph G = (V, E) such that uv € E if and only if u || v in P.

3 Comparability invariance

A property of partial orders is a comparability invariant if ei-
ther all orders with the same comparability graph have that
property or none have that property. It is known that being
a linear-interval order is a comparability invariant [4]. In this
section, we will show the following.

Theorem 1. Being a linear-semiorder is a comparability in-
variant.

We use the proof technique developed in [7].

4 Characterization

Let P be a partial order on a set V. A linear order L on V is a
linear extension of P if u < v in L whenever u < v in P. We
define some properties of linear extensions.

The order 2 + 2 of P is the partial order consisting of four
elements x, y, z, w of V such that x < y and z < w while x || w
and z || y in P. Notice that x || zand y || w in P. We say that a
linear extension L of P fulfills the 2+ 2 rule if y < zorw < x
in L for each induced suborder 2 + 2 of P.

The order 3 + 1 of P is the partial order consisting of four
elements x, y, z, w of V such that x < y < z while x || w
and w || zin P. Notice that y || w in P. We say that a linear
extension L of P fulfills the 3 + 1 rule if w < x or z < win L for
each induced suborder 3 + 1 of P.

Our previous work [16] shows that a partial order is a linear-
interval order if and only if it has a linear extension fulfilling
the 2 + 2 rule. In this paper, we show a similar characterization
for linear-semiorders.

Theorem 2. A partial order is a linear-semiorder if and only if
it has a linear extension fulfilling the 2 + 2 rule and 3 + 1 rule.

Let G = (V, E) be a graph. A vertex ordering of G is a linear
order of the vertex set V. A vertex ordering characterization
of a graph class is a characterization of the following type: a
graph G is in that class if and only if G has a vertex ordering
fulfilling some properties.

Incomparability graphs of linear-interval orders can be char-
acterized so that a graph G is such a graph if and only if
there is a vertex ordering of G that contains no suborderings
in Figs. 2(a)—(c) [16]. For linear-semiorders, a similar charac-
terization follows from Theorem 2.

Theorem 3. A graph G is the incomparability graph of a
linear-semiorder if and only if there is a vertex ordering of G
that contains no suborderings in Figs. 2(a)—(e).

The class of linear-interval orders contains interval orders
and orders of dimension 2 as proper subclasses [5]. For linear-
semiorders, we have the following hierarchical relationships
between classes of orders.

(@
(c)

(b)

--- -= ==
- * -

Peas
(e)

e
)

Figure 2: Forbidden patterns. Lines and dashed lines denote
edges and non-edges, respectively. Edges that may or may not
be present is not drawn.

Theorem 4. The classes of linear-semiorders and inter-
val orders are incomparable; therefore, the class of linear-
semiorders is a proper subclass of linear-interval orders. The
class of linear-semiorders contains semiorders and orders of
dimension 2 as proper subclasses.
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Anti-Slide Placements of Pentominoes

extended abstract

Yasuhiko Takenaga (presenter), Xi Yang and Asuka Inada
Department of Computer and Network Engineering,
Graduate School of Informatics and Engineering,
The University of Electro-Communications

1 Introduction

An anti-slide puzzle is a puzzle to place the pieces
into the frame so that no piece can move. This kind
of puzzle was first proposed by Strijbos[1]. Fig.1 is
an example of a solution for an anti-slide puzzle.
As shown in the example, there may remain blank
space in the frame where no piece is placed.

.y

Figure 1: An example of an anti-slide puzzle.

In [2], Amano et al. solved three-dimensional
anti-slide puzzles with 2 x 2 x 1 pieces as in [1] using
an IP solver. In this paper, we show how to check
locally the condition to be an anti-slide placement
and enumerate the number of anti-slide placements
of pentomino pieces using ordered binary decision
diagrams (OBDDs).

2 Ordered Binary Decision Di-
agrams

An OBDD is a directed acyclic graph representing a
Boolean function. An OBDD has a source node and
two sink nodes labeled by Boolean values 0 and 1
respectively. Each node except sinks is labeled by a
variable and has two outgoing edges called a 0-edge
and a 1-edge respectively.

On any path from the source to a sink, vari-
ables appear according to a total order of variables.
Given an assignment to all the variables, the value
of the function is computed by traversing from the
source to a sink according to the values of the vari-
ables. Fig. 2 is an example of the OBDD, whose
variable order is x1x2x3.

Figure 2: An example of an OBDD.

3 Enumeration of Placements

3.1 Condition to be Anti-Slide

In this section, we consider how to check if a place-
ment of pieces satisfies the condition to be anti-
slide.

In Fig.3(a), the cells with letter A (resp. B) are
the cells adjacent to the left (resp. right) of a cell in
piece U. Obviously, at least one of the cells with A
(resp. B) must be occupied by another piece or the
wall to prevent the piece to move to the left (resp.
right). However, it is not sufficient as shown in
Fig.3(b). In this figure, though both pieces satisfies
the above condition, the pieces may move together
to the right or left. To prevent the move to the
left (resp. right), at least one of the cells with A’
(resp. B’) must be occupied by another piece or
the wall. Thus, in the case that a piece is placed
in the concave of piece U, we regard the pieces as a
single piece and check the above condition. In the
case of pentomino pieces, at most three pieces need
to be considered as one piece. Note that the sets of
pieces to consider as one piece for left-right moves
and those for up-down moves are different.

In the following, we prove the correctness of the
condition. When a piece includes cells (a,b) and
(a,b+ ¢) and not a cell (a,b+ k) for some 1 < k <
c¢—1, the cell (a,b+k) is called a horizontal concave.
Similarly, if a piece includes cells (a, b) and (a+c, b)
and not a cell (a+ k,b) for some 1 < k < c—1, the
cell (a+ k,b) is called a vertical concave.

Theorem 1. Assume that no piece has a vertical
concave. Then any piece on the board cannot move
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Figure 3: Condition for piece U.

to the left (resp. right) if and only if, for any piece
on the board, there exists another piece or a wall on
a cell adjacent to the left (resp. right) of the piece.

Clearly, the same result holds for the up and
down moves of the pieces without horizontal con-
caves.

Proof. (only if) Obvious.

(if) Consider a directed graph G such that the
set of vertices represents the pieces on the board
and the left wall. There exists a directed edge from
piece p to ¢ when ¢ is adjacent to the left of p. Then
any vertex except the wall has at least one outgoing
edge. Any piece from which there is a path to the
sink (wall) in G' cannot move to the left.

G has a vertex with no path to the sink only
when G has a cycle from which there is no path to
the sink. In the following, we show that G does not
have a cycle. Assume to the contrary that there
exists a cycle. Let p; (0 < ¢ < k — 1) be pieces
on the cycle, such that there exists an edge from
p; to pjt1, where the addition is under modulo k.
We call a cell (s,t) in p; to be a blocking cell when
cell (s + 1,t) belongs to p;_1. Let b; = (s;,t;) be a
blocking cell in p; and let b, = (s; + 1,¢;). Cell
b; can be arbitrary chosen except that the blocking
cells with the largest and the smallest y-coordinates
must be chosen. A path from b; to b} can be made
in p;. Then a directed cycle C' is formed by such
paths and paths from b} to b;41.

We assume that cycle C' is clockwise and lead a
contradiction. Consider the blocking cell b; with the
largest y-coordinate. From b;_; to b;, the cycle is
going from right to left. As C' is clockwise, the cycle
must go from left to right above b,_, and b;. As b,
is the blocking cell with the largest y-coordinate,
there must exist a piece which includes cells on the
left and right of b;_,. It means that the piece has a
vertical concave.

Similarly, by considering the blocking cell with
the smallest y-coordinate, we can see that C' is not
counter-clockwise. Thus, G does not include a cy-

cle. O

3.2 Experimental Results

We have implemented the program to enumerate
the number of anti-slide placements of pentominoes.
A pentomino can be placed in at most eight ways by
rotating and turning it over. We deal with them as
different kinds of pieces. The implementation uses
CUDD package[4] to manipulate OBDDs.

In the following experiments, we have assumed
that only the kinds of pieces to be used are given
and the number of pieces for each kind of piece is
not limited. It is allowed that some kind of piece is
not used at all. Experimental results are shown in
Tables 1 and 2.

size of board | number of plecements
3x3 25
4 x4 1,668
5%x5 455,835
6x5 9,313,423
6x6 404,121,230
Table 1: Number of placements for all kinds of
pieces.

size of board | number of placements
3x3 25
4 x4 1,356
5x5 321,008
6x5 6,101,083
6 x6 243,307,547

Table 2: Number of placements for pieces except U.
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Graph Compression Through Bridge Coalescence and Ear Decomposition
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Let G be a simple, connected, undirected graph. A connected subgraph of G is called a bridge component of
G if all its edges are bridges in G. A bridge component is said to be maximal if it is not a proper subgraph of
any another bridge component of G. Denote the set of bridges of G by B(G).

Figure 1: Graph G and it bridge coalescence graph 3(G).

In Figure 7?7, there are six maximal bridge components of G, labeled S1,S53,...,S5s. We define the bridge
coalescence of G, denoted by 5(G), as the graph obtained if, for every bridge {u,v} in G, we merge and identify
u and v into a single vertex in 3(G). Observe that the vertices of 3(G) are labeled according to the maximal
bridge components of G, that is, two vertices S; and S; in B(G) are adjacent if a vertex in S; is adjacent to a
vertex in S; in G. Clearly, 3(G) is a bridgeless graph.

On the other hand, an ear decomposition of a graph G is defined as the sequence of subgraphs of G, written
as (Go;Gh;...;G = G), where Gy is a cycle (see Figure ??(c)) and G; is G;—1 but with an attached ear (see
Figure ??(a)). Robbins [1] proved that only bridgeless graphs have an ear decomposition.

Figure 2: (a) A graph G, (b) its bridge coalescence 3(G), (c) an ear decomposition of
B(G), and (b) its graph compression € (8(G)).

In this paper, we begin with a graph G (see Figure ??(a)) and then produce a bridgeless graph through
bridge coalescence (see Figure 7?(b)). Next, we look into the ear decomposition of the latter (see Figure ??(c)).
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Finally, we introduce a two-fold compression scheme, denoted by € (5(G)) (see Figure ??(d)). This procedure
produces a minimal multigraph that preserves the cyclic structure of the original graph G. We claim that this
two-fold compression can be used to categorize graphs based on their size-order difference. In this research, we

computed the following bounds for the order and size of € (5(G)), namely,

V(€ (B(G)))] < max{1,2(|E(G)| - [V(G)])}

[E(E(5(G))] < max{1,3(|E(G)| = [V(G)])}
If G is a tree, then €(5(G))) = K;. If G is an almost-tree of order n and size m, then m — n is small. With

the order and size of € (5(G))) being bounded by a factor of m — n, what this compression does is transform
a cyclic graph G of order n and size m into a smaller graph with at most max{1,2(m — n)} vertices and
max{1,3(m —n)} edges, thereby addressing the weakness of ear decomposition being only applicable to graphs
with no bridges. With bridge coalescence, it is now possible to perform the same compression scheme even
for graphs with bridges. Further, through % (3(G))), it is now possible to objectively characterize the cyclic
structure of graphs based on the circuit rank r(G) (as in [2]).

This approach has potential in solving problems related to graph cycles more efficiently. For example, if a
problem on a graph G is solvable in O(f(n;m)) complexity then, through % (3(G))), the same problem can be
reduced to O(X + f(2(m — n);3(m — n))) complexity, where X is the complexity of performing the two-fold
compression. Thus, no matter how large m and n can become, as long as m — n remains fixed, G remains
solvable in O(X + f(2(m —n);3(m —n))) time. Finally, we proved that O(X) is linear with respect to the order
and size of the original graph G using a bridge finding algorithm [3], a linear ear decomposition step [4] and

union-find algorithm [5].
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In [6], the authors considered the notion of critical edges (and vertices), defined as follows:
An edge (or vertex) in a graph is critical if its deletion reduces the chromatic number of the
graph by one. They studied the complexity of the problem of testing for the existence of critical
vertices and edges in H-free graphs. They showed that an edge in a graph is critical if and
only if its contraction reduces the chromatic number by one. The effect of edge deletion on the
set chromatic number was also studied in [1], where it was shown that deleting an edge from a
graph changes (increases/decreases) the set chromatic number by at most two.

In this work, we consider the notion of edge deletion with respect to a different kind of
vertex coloring called sigma coloring. G. Chartrand, F. Okamoto, and P. Zhang [2] defined
the concept of the sigma chromatic number of a graph as follows: For a non-trivial connected
graph G, let ¢: V (G) — N be a vertex coloring of G. For each v € V (G), let N (v) denote the
neighborhood of v, i.e., the set of vertices adjacent to v. Moreover, the color sum of v, denoted
by o (v), is defined to be the sum of the colors of the vertices in N (v). If o (u) # o (v) for
every two adjacent u,v € V (G), then c is called a sigma coloring of G. The minimum number
of colors required in a sigma coloring of GG is called its sigma chromatic number and is denoted
by o(G).

It was shown in [3] that for each positive integer k, the problem of deciding whether the
sigma chromatic number of a 3-reqular graph equals k is NP-complete. Moreover, the sigma
chromatic number of some families of graphs are discussed in [5, 4].

In this paper, we show the effect of edge deletion on the sigma chromatic number of a graph
as follows:

Result 1. Let G be a graph and e an edge of G. Denote by G — e the graph obtained by deleting
the edge e from G. then
—1<0(G)—0(G—e)<2

Moreover, we show that for each £k = —1,0,1, 2, there are infinitely many graphs G with an
edge e for which 0(G) —o(G —¢) = k.

We also study the existence of sequences of edge deletions each of which decreases the sigma
chromatic number by one. We consider this problem for path complements, which we define as
follows:

Definition. The complement of a path P,,, m > 2, in the complete graph K,,n > m, is the
graph obtained by deleting the edges of a subgraph of K, that is isomorphic to P,,. This graph
18 denoted by ?m’n.

As an example, the graph P, 7 is shown in Figure 1 where the deleted edges are indicated
using dashed segments.

It is easy to see that ?Qm, n > 3, has sigma chromatic number n — 2; that is, deleting one
edge from K, decreases the sigma chromatic number by two. As a consequence of Proposition
3.1 in [2], it is worth noting that there is no sequence of edge deletions in K,, that will decrease
the sigma chromatic number to n — 1.

We have the following result:

Result 2. Form =2,3,...,[n/2],

o (Pm,n) =n-—-m.
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Figure 1: The path complement ?4’7

The above result implies the following: Consider a subgraph of K, isomorphic to a path
P, v — vy — -+ - = vy, where each v; is a vertex of K. The deletion of edge v1vy decreases
the sigma chromatic number by two. Then in the sequence of deletions of edges v;v;+1 where ¢
runs from 2 to m — 1, each edge deletion decreases the sigma chromatic number by one. This is
illustrated for K7 in Figure 2. For comparison, the same sequence of edge deletions in Figure 2
produce the following sequence of chromatic numbers: y = 6, x = 6, x = 5.

[15] [14] [10]

(1) @]
[12]  [13]

Figure 2: A sequence of edge deletions in K7
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Abstract

It is known that a uniformly-ordered p-labeling (also known as a
pTT-labeling) of a bipartite graph G with m edges can be used to
obtain a cyclic G-decomposition of Ka,,¢11 for every positive integer
t. We show that the generalized Petersen graphs P(6r,3) admits a
pTt-labeling for every positive integer r.

Keywords: Cyclic G-designs, Generalized Petersen Graphs, Uniformly-
ordered p-labelings.

127



Dr. Mario Puzzle Generation: Theory, Practice, and History
(Famicom/NES)

Aaron Williams”*

1 Introduction

Dr. Mario (R 7 % — < ') %) was released by Nintendo on
the Famicom/NES (Japan/USA) in 1990. It influenced count-
less matching games (see Juul [3]) and was one of the first
games with randomly generated puzzles (see Parish [6]).
As mathematicians we ask the following question.

* How are Dr. Mario puzzles defined combinatorially?
As computer scientists we ask the following question.

* How can puzzles be generated algorithmically?
As retroarcheologists (Aycock [1]) we ask the following.

¢ How did Nintendo’s programmers generate puzzles?
As video game historians we ask the following question.

e Why do all NES puzzles have v < 84 viruses?
Finally, as retrogamers we ask the following question.

e Can we make the NES game more difficult (and fun)?
This extended abstract briefly answers these questions. We
assume the reader is familiar with the NES game.

2 Graph Coloring

A Dr. Mario puzzlefits v viruses in the bottom r rows of a grid.
Each virus is red, yellow, or blue with most one per cell. All
commercial releases have ¢ = 8 columns and we assume this
unless otherwise stated. For example, Figure 1a has several
puzzles with viruses in the bottom r = 13 rows.

Remark 1. The hardest NES puzzles have difficulty level 20.
These puzzles fit v = 84 viruses in the bottom r = 13 rows.

Nintendo never puts three consecutive same color viruses
horizontally or vertically. In fact, they use a stronger con-
straint: Same color viruses are never two cells away horizon-
tally or vertically. Thus, a virus in cell (a, b) forbids (a+2, b),
(a-2,b), (a,b+2), (a,b-2) from having the same color of
virus. If a puzzle satisfies this constraint, then it is valid.

For graph theorists a valid puzzle is simply a partially 3-
colored r-by-c grid graph, except that edges connect ver-
tices two rows/columns away. This graph has four connected
components; each component is a standard grid graph con-
taining vertices with the same pair of row and column par-
ities (or pairities). Figure 2 illustrates the graphs associated
with the puzzle in Figure 1a.

Remark 2. A Dr. Mario puzzle is valid if and only if its con-
nected grid graphs receive proper partial 3-colorings.

2.1 Maximal and Balanced Puzzles

A color is available for an empty cell if adding that color of
virus doesn’'t break Nintendo’s constraint. A puzzle is max-
imal if no cells have available colors; equivalently, the grid
graphs are maximally 3-colored. For example, Figure 1a is
not maximal by Figure 2, but Figures 1b-1c are maximal.

A Dr. Mario puzzle is balanced if its three colors have (at
most) two consecutive frequencies. Figure 1c is balanced
since each color is used % =20 times.

*Williams College, aaron.williams@williams.edu

(@) Puzzle from (b) Maximal puzzle (c) Maximal bal-
seed 1394 with v=84 with seed 1394. It anced puzzle with
viruses in r=13 rows. has 100 viruses. only 60 viruses.

Figure 1: Puzzles from (a) NES game, (b) NES game with
Game Genie code TANETZPA, with (c) a hypothetical puzzle.

Figure 2: Figure 1a as graph coloring. Black denotes no color
(i.e. no virus). The top-left grid graph has (even,even) pairity.

3 Algorithms

Now we design simple algorithms for generating random
valid Dr. Mario puzzles with v viruses. We focus on algo-
rithms that add one virus at a time and never backtrack.

Our first algorithm uses random positions and colors.

Algorithm 1. Choose a random cell and a random color until
that color is available at that cell.

Our second algorithm also uses random positions, but it
cycles through the colors to ensure the result is balanced.

Algorithm 2. Cycle through colors red, yellow, blue. Choose
arandom cell until that color is available.

Unfortunately, these algorithms do not safely generate
NES puzzles. In particular, Figure 1c proves Remark 3.

Remark 3. Algorithms 1 & 2 can fail with 60 viruses in 13 rows.
Next we consider randomizing only the colors.

Algorithm 3. Visit the cells in row-major order. Choose a
random available color or no color for the cell; reweight this
probability! to ensure v are added in total.

Notice that Algorithm 3 always works. This is because each
cell has < 2 prior neighbors in row-major order, so every cell
has at least one available color when it is visited.

Remark 4. Algorithms 3 always fits v viruses in an r-by-c grid,
so long as the necessary condition v < r - ¢ holds.

1 2 8 11f there are x remaining viruses and y remaining cells, then the probabil-

X

1ty of choosing to color a cell is ¥



4 NES Game

Next we consider how Nintendo programmer Takahiro
Harada generated random levels in the NES game. The pio-
neering work of user nightmareci in disassembling the NES
machine code was invaluable in this investigation (see [4, 5]).

4.1 Harada’s Algorithm

Harada’s approach is similar to Algorithm 2 in that it chooses
random positions and attempts to cycle through the colors.
However, when it fails with its preferred choice, it proceeds
in a manner that is similar to Algorithm 3. For further details
including pseudocode see [5].
Algorithm H. Choose a random cell. Add the highest-priority
available color to this cell. If no colors are available, then re-
peat on the next cell in row-major order.

In theory, Algorithm H can generate any balanced puz-
zle, including Figure 1c. Therefore, Nintendo’s algorithm is
flawed—it does not safely generate NES puzzles!

Remark 5. Algorithms H can fail with 60 viruses in 13 rows.

If the NES game did generate Figure 1c, then it would freeze
(i.e. infinite loop). Luckily, this never occurs in practice due
to the limited form of randomization used in the game.

4.2 Nintendo’s LFSR and Randomization

For randomization Harada used a 15-bit linear feedback shift
register (see Golomb [2]) with primitive feedback polynomial
x'® + x” + 1. Thus, bits 7 and 15 are tapped. So if the cur-
rent state is by b, - - - b;s, then x = (b; + b;s5) mod 2 is the next
random bit, and the next state is xb; b, - - - b14 (see Figure 3).

b b

tTo[x[x[x[x o[ [i[o[1[i[o[1]
1 ﬁ_lo |1
Figure 3: Nintendo’s LFSR. For example, state

101111011101101 is followed by state 110111101110110.

Before generating a puzzle the NES game seeds the LFSR
state to any non-zero value by by --- by5. This gives an entry
point into a cyclic stream of 2!° — 1 = 32,767 pseudorandom
bits. Algorithm H then proceeds deterministically.

Remark 6. Dr. Mario (NES) has at most 32,767 distinct puz-
zles per r-by-c grid. (Figure 1c isn’'t one of them.)

Note that the number of NES puzzles pales in comparison
to the number of valid puzzles. For example, there are more
than () > 102! puzzles with r = 13 rows and v = 84 viruses.

The use of a 15-bit LFSR instead of a 16-bit LFSR was likely
due to efficiency. Maximal length 16-bit LFSRs require four
taps [7] and hence more instructions. Due to the 8-bit archi-
tecture of the NES, the state is stored across two bytes with

b1e ignored. Thus, state 0Ox5EED and 0x5EEC are equivalent.

4.3 Analyzing Algorithm H

A translation of Algorithm H (and its LFSR) into C is provided
by nightmareci in [4]. By modifying this program, we can
run Algorithm H until it generates a maximal puzzle, instead
of quitting after the required number of viruses. The failure
point (i.e. the virus number not added) for all 32,767 puzzles
with 13 rows appears in Figure 4. For example, Figure 1b is
one of the 5,247 different levels with a failure point of 101.

Notice that Algorithm H never fails before the 85" virus.
Thus, it never freezes in the actual NES game.

PEBERBBR
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Failure Point Distribution for Puzzles on a 13-by-8 Grid
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Figure 4: Distribution of Algorithm H failure points for level
20 puzzles using the Game Genie code YANETZPA.

5 Historical Signficance

Newer Dr. Mario titles have more viruses in the most difficult
puzzles. For example, Dr. Mario Online Rx (Wii) fits v = 99
viruses in r = 13 rows. Our study has explained why the NES
game only has v = 84 in these puzzles. Simply put, Harada’s
algorithm was not robust enough. In practice, Algorithm H
begins to fail with more than v = 88 viruses.

Prototypes of Dr. Mario exist under the name Virus [8] and
allow up to v = 96 viruses (although the three-in-a-row re-
striction is not followed). Thus, Nintendo likley wanted more
viruses in the NES game, but were restricted by Algorithm
H. Furthermore, parameters for the NES release were likely
tuned to maximize viruses while avoiding game freezes.

6 Improving the NES Game with Game Genie Codes

In Section 4.3 we modified a simulation of the NES puzzle
generation algorithm. Now we modify the actual game in or-
der to create more difficult (and fun) puzzles.

The Game Genie is an NES peripheral that modifies mem-
ory values to alter gameplay. Table 1 has new codes for the
number of viruses in all levels, and the rows in level 20.

Code All Levels Code Level 20
AANETZPA —4 viruses PENZZUGE 10 rows
ZANETZPA +4 viruses ZENZZUGE 11 rows
LANETZPA +8 viruses LENZZUGE 12 rows
GANETZPA +12 viruses IENZZUGE 14 rows
IANETZPA +16 viruses TENZZUGE 15 rows
TANETZPA +20 viruses YENZZUGE 16 rows
YANETZPA +24 viruses
AANETZPE +28 viruses
PANETZPE +32 viruses

Table 1: New Game Genie codes for Dr. Mario (NES) and an
impossibly hard puzzle.

Some codes can cause freezing during puzzle generation.
For example, TANETZPA completely fills level 20 puzzles with
77

viruses and its success rate is only - = 0.23% by Figure 4.
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1 Introduction

The study of the robot motion planning problem, sometimes referred to as the geometric path planning problem, the
generalized movers’ problem or the piano movers’ problem, dates back to the 1970s. We refer to [1] for a recent survey

of this problem.

Definition 1 (Robot Motion Planning Problem). In a Euclidean space R? or R3 (the workspace), guide a robot from

one position to another, by avoiding the obstacles in the space.

Note that in general, the robot may be consist of several parts, and each part may be moved independently. A
standard way to study the problem is to define the configuration space. For example, let the robot be a long rectangle
that can silde and rotate in the plane. Then a configuration of this rectangular robot can be exactly described by the
coordinates (z, y) of one of its vertices, and the angle 6 between its long edge and the z-axis. So the configuration space
is the set of all points (z,y,0) € R x R x [0,27) which are collision-free with all obstacles. Usually the configuration
space has a higher dimension than the workspace.

In general, the continous version of the robot motion planning problem is PSPACE-hard. Canny gave the first
single exponential-time algorithm in the dimensionality of the configuration space in his doctoral thesis [2]. As a
corollary, if we fix the dimension of the configuration space, then we will have a polynomial algortihm for the problem.

In real world application, there are lots of situation where the robot moves in a discrete manner. But the problem
remains PSPACE-complete for the discrete case. The sliding block puzzles can be viewed as a discrete type of motion
planning problem, and it is PSPACE-complete, even with blocks of size 1 x 2 and 2 x 1. If all blocks are of size 1 x 1,
it becomes a generalization of the Fifteen Puzzle, and the problem is solvable in polynomial time.

In this paper, we study another discrete case of the motion planning problem, the motion planning for a forklift
in a warehouse. Unlike the sliding block problem which has a workspace of dimesion 2, the motion planning problem
of a forklift has a workspace of dimension 3. We apply the configuration space method to analyse the problem. As we
shall see, the configuration space becomes a graph in the discrete case.

And we use a Japanese game called Zaikoban® developed by NetFarm in 2007 as a model for the forklift motion
planning problem in a warehouse. The game was also available temporarily under the name Soko Forklift - Zaikoban
for Android system at Google Play in 2014, and for iOS system in 2015. See Figure 1 for screenshots taken from the

Android version.

Thttps://www.netfarm.ne.jp/island /release/070713_01.pdf
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Figure 1: Screenshots of the game Zaikoban

2 Main results

In the game Zaikoban, a forklift has to transport one or more boxes from their initial positions to their respective
goal positions. The warehouse is a 3-dimensional grid with walls. The forklift occupies 4 cubes of the grid, and it can
move forwards or backwards, turn 90 degrees to the left or right, raise or lower the fork, and load or unload a box
from the fork. There are a few addtional elements in the game of Zaikoban, such as fragile floors which the forklift

can go through only without carring a box.

Definition 2 (Forklift Motion Planning Problem). Given a warehouse with walls, one forklift, one or more boxes with

goal positions, and possibly a few addtional elements, decide whether the transportation of the boxes can be done by

the forklift.

If there is only one box to be transported, then the configuration space has dimension 4, and there exists a

polynomial-time algorithm to find the shortest path.
Theorem 1. The forklift motion planning problem can be solved in polynomial time for one box.

If there is no limit on the number of boxes, which is equivalent to that there is no limit on the dimensionality
of the configuration space, then we show the problem is PSPACE-complete, by an application of the NCL model [3]

developed by Hearn and Demaine.

Theorem 2. The forklift motion planning problem is PSPACE-complete in the general case.
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Minimal forbidden graphs for widely generalized line graphs
Michitaka Furuya * Sho Kubota Tetsuji Taniguchi * Kiyoto Yoshino®

We consider only finite undirected graphs without loops or multiple edges. The eigenvalues of the adjacent
matrix of a graph G are called the eigenvalues of G. Our motivation derives from the smallest eigenvalue of
graphs. Hoffman [1] proved a celebrated theorem: For a graph G with the smallest eigenvalue greater than
—1 — +/2, if the minimum degree is sufficiently large, then G is a generalized line graph. In addition, Woo and
Neumaier [5] characterized graphs whose minimum degree is sufficiently large and the smallest eigenvalue is in
the range (—2.4812--- ,—1 — \/5] To state it correctly, we need to introduce the concepts of so-called “Hoffman
graph” and “slim $)-line graph”, which is defined in the next section. However, their characterization by using
slim $-line graph are slightly complicated. We give a necessary condition of the minimal forbidden graphs for the
slim $-line graphs for a set $ of Hoffman graphs satisfying a certain condition. In general, minimal forbidden
graph G for a set G of graphs with hereditary property is a graph not in G and every proper induced subgraph of
G is isomorphic to a graph in G.

1 Hoffman graphs

In this section, we define Hoffman graphs and related concepts. A Hoffman graph b is a pair (H, ) of a graph H
and a labeling map pu: V — {f, s}, where V denotes the vertex set of H, satisfying the following conditions:

1. every vertex with label f is adjacent to at least one vertex with label s; and

2. the vertices with label f are pairwise non-adjacent.

dde Wiy ey

Figure 1: Hoffman graphs, whose slim (resp. fat) vertices are depicted as small (resp. large) filled circles
Let h = (H, ) be a Hoffman graph. A vertex of H with label s (resp. label f) is called a slim vertex (resp. a
fat vertex). We let Vi(b) (resp. V¢(h)) denote the set of slim vertices (resp. fat vertices) of H, and let V() =
Vs(h) U Vi(h). For a vertex x of b, we let Ng(x) (resp. Ng(x)) denote the set of neighbors labeled s (resp. f) of
z, and set Ny(z) = Ny(z) U Nhf (r). We regard (ordinary) graphs as Hoffman graphs with only slim vertices. A
Hoffman graph b' = (H’, ;i) is called an induced (Hoffman) subgraph of b if H' is an induced subgraph of H and
ﬂ‘v( H) = i'. The slim subgraph of b is the induced subgraph of § whose vertices are the slim ones of b.

Definition (Sum of Hoffman graphs and slim $-line graphs). Let b be a Hoffman graph, and let b and h?
be two non-empty induced Hoffman subgraphs of . We say that b is a sum of b and hz, denoted by h = f)l &) bz,
if the following conditions hold:

1. V(h) =V(h")UV(h), Vi(h) = Vi(h") UVi(h?) and Vi(h") N Vi(h?) = 0;

2. for i € {1,2} and a vertex z € V4(h"), N;: (z) = N,{(x) NV;(h"); and

*M. F. was supported by JSPS KAKENHI; grant number: 18K13449
tS. K. was supported by JSPS KAKENHI; grant number: 18J10656
iT. T. was supported by JSPS KAKENHI; grant number: 16K05263
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3. for vertices = € Vi (h') and y € V,(b?), |Nhf(m) N N,{(y)| <1 and |Nf{(l’) N Nhf(y)| =1 if and only if z and y
are adjacent in b.

If b is a sum of two Hoffman graphs, then it is said to be decomposable; otherwise, it is said to be indecomposable.
Let $ be a family of Hoffman graphs. A graph G is called an slim $)-line graph if it is an induced subgraph of
h=60B;, h® where h* € § for all 7. In this case, b is called a strict $-cover of G if V4(G) = V(). Moreover, for
a strict H-cover g of G, h and g is said to be equivalent if there exists graph isomorphism ¢ from the underlying
graph of b to that of g preserving slimness and fatness such that ¢y (q) = id.

2 Main results

Woo and Neumaier [5] proved that, for a graph G with the smallest eigenvalue in the range (o, —1 — \/5], if the
minimum degree is sufficiently large, then G is a slim {5, b5, b7, bg }-line graph, where « is the smallest root of the
polynomial 2 + 222 — 22 — 2. Furthermore, they posed a problem to reveal the list of minimal forbidden graphs
for the slim {h,, b5, b7, hg}-line graphs (see [5, Open Problem 3]). It is still open, however Taniguchi [4] partially
solved the problem to give the minimal forbidden graph characterization of slim {b,, hs}-line graphs which is
a subclass of slim {h,, b5, b, ho}-line graphs. More specifically, he proved that there are precisely 38 minimal
forbidden graphs for the slim {h,, b5 }-line graphs and they have at most 8 vertices. Our result is a generalization
of his result, and we give a short proof.

Let O be the set of Hoffman graphs consisting of b, and the indecomposable Hoffman graphs h such that
[Vs(b)| > 2, |Vf(h)| = 1, and all slim vertices are adjacent to the unique fat vertex in h. For a set $ C O, let
H={hy}U{h €O} is an induced Hoffman subgraph of a graph in $}. The following is the first main result:

First main theorem. Let = C O. Let N be an integer at least 7. Suppose that every connected slim $-line
graph of order N has exactly one strict $-cover up to equivalence. Then, so does every one of order at least N.

In the above theorem, if there exists an integer N satisfying the assumption, we let Ng be the smallest such
integer N; otherwise, let Ny = co. Furthermore, we define Ng := Ng for any $§ C O. If N is finite for $ C O,
then it can be found by using softwares such as MAGMA [3]. The following is the second main result:

Second main theorem. Let $§ = C O. Let G be a minimal forbidden graph for the slim $-line graphs with
|[V(G)| > Ng + 2. Then, there exist p € V(G) and g € $ such that G — p is isomorphic to the slim subgraph of g.

By applying two main theorems to {hs, b3, b5} and using computer, we derive Taniguchi’s result. Finally, we
introduce an application. The problem to classify the graphs with the smallest eigenvalue at least —3 was studied.
Koolen, Yang and Yang [2] proved that if a graph with the smallest eigenvalue at least —3 has the sufficiently
large minimum degree, then it is an induced subgraph of a Hoffman graph in G, where G is the set of fat Hoffman
graphs with the smallest eigenvalue at least —3 (in terms of Hoffman graph). By applying our main theorems, we
derive that every minimal forbidden graph for the slim O N G-line graphs has at most 13 vertices.
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